IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i1p67-71.html
   My bibliography  Save this article

A generalized Isserlis theorem for location mixtures of Gaussian random vectors

Author

Listed:
  • Vignat, C.

Abstract

In a recent paper (Michalowicz et al., 2011), Michalowicz et al. provide an extension of the Isserlis theorem to the case of a Rademacher location mixture of a Gaussian vector. This theorem is known to physicists under the name of Wick’s theorem. We generalize here this result to the case of any location mixture of Gaussian vector; we also provide an example of the extension of the Isserlis theorem to a “scale–location” mixture of Gaussian, namely, the d-dimensional generalized hyperbolic distribution.

Suggested Citation

  • Vignat, C., 2012. "A generalized Isserlis theorem for location mixtures of Gaussian random vectors," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 67-71.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:67-71
    DOI: 10.1016/j.spl.2011.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vignat, C. & Bhatnagar, S., 2008. "An extension of Wick's theorem," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2404-2407, October.
    2. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    3. Michalowicz, J.V. & Nichols, J.M. & Bucholtz, F. & Olson, C.C., 2011. "A general Isserlis theorem for mixed-Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1233-1240, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Li & Sushanta K. Mallick & Nianling Wang & Jun Yu & Tao Zeng, 2024. "Deviance Information Criterion for Model Selection:Theoretical Justification and Applications," Working Papers 202415, University of Macau, Faculty of Business Administration.
    2. Telschow, Fabian J.E. & Davenport, Samuel & Schwartzman, Armin, 2022. "Functional delta residuals and applications to simultaneous confidence bands of moment based statistics," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    4. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max Z. Li & Karthik Gopalakrishnan & Kristyn Pantoja & Hamsa Balakrishnan, 2021. "Graph Signal Processing Techniques for Analyzing Aviation Disruptions," Transportation Science, INFORMS, vol. 55(3), pages 553-573, May.
    2. repec:nbp:nbpbik:v:47:y:2016:i:6:p:365-394 is not listed on IDEAS
    3. Seth Pruitt, 2012. "Uncertainty Over Models and Data: The Rise and Fall of American Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(2‐3), pages 341-365, March.
    4. Mutschler, Willi, 2015. "Note on Higher-Order Statistics for the Pruned-State-Space of nonlinear DSGE models," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113138, Verein für Socialpolitik / German Economic Association.
    5. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    6. David Rossell & Oriol Abril & Anirban Bhattacharya, 2021. "Approximate Laplace approximations for scalable model selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 853-879, September.
    7. Julia Adamska & Łukasz Bielak & Joanna Janczura & Agnieszka Wyłomańska, 2022. "From Multi- to Univariate: A Product Random Variable with an Application to Electricity Market Transactions: Pareto and Student’s t -Distribution Case," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    8. Baishuai Zuo & Chuancun Yin & Narayanaswamy Balakrishnan, 2020. "Explicit expressions for joint moments of $n$-dimensional elliptical distributions," Papers 2007.09349, arXiv.org, revised Aug 2020.
    9. Robert E. Gaunt, 2022. "The basic distributional theory for the product of zero mean correlated normal random variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 450-470, November.
    10. Kan, Raymond & Wang, Xiaolu, 2010. "On the distribution of the sample autocorrelation coefficients," Journal of Econometrics, Elsevier, vol. 154(2), pages 101-121, February.
    11. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    12. Hillier, Grant & Kan, Raymond & Wang, Xiaoulu, 2009. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," Discussion Paper Series In Economics And Econometrics 918, Economics Division, School of Social Sciences, University of Southampton.
    13. Oh Kang Kwon & Stephen Satchell, 2020. "The Distribution of Cross Sectional Momentum Returns When Underlying Asset Returns Are Student’s t Distributed," JRFM, MDPI, vol. 13(2), pages 1-19, February.
    14. Russell Oliver & Sun Wei, 2024. "Using sums-of-squares to prove Gaussian product inequalities," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-13.
    15. Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
    16. Theo Dijkstra & Karin Schermelleh-Engel, 2014. "Consistent Partial Least Squares for Nonlinear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 585-604, October.
    17. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    18. Grant Hillier & Raymond Kan & Xiaolu Wang, 2008. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," CeMMAP working papers CWP14/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Michalowicz, J.V. & Nichols, J.M. & Bucholtz, F. & Olson, C.C., 2011. "A general Isserlis theorem for mixed-Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1233-1240, August.
    20. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    21. Hillier, Grant & Kan, Raymond & Wang, Xiaoulu, 2009. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," Discussion Paper Series In Economics And Econometrics 0918, Economics Division, School of Social Sciences, University of Southampton.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:67-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.