IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/66761.html
   My bibliography  Save this paper

Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses

Author

Listed:
  • Atkinson, Anthony C.
  • Biswas, Atanu

Abstract

Adaptive randomization of the sequential construction of optimum experimental designs is used to derive biased-coin designs for longitudinal clinical trials with continuous responses. The designs, coming from a very general rule, target pre-specified allocation proportions for the ranked treatment effects. Many of the properties of the designs are similar to those of well understood designs for univariate responses. A numerical study illustrates this similarity in a comparison of four designs for longitudinal trials. Designs for multivariate responses can likewise be found, requiring only the appropriate information matrix. Some new results in the theory of optimum experimental design for multivariate responses are presented.

Suggested Citation

  • Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:66761
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/66761/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brajendra C. Sutradhar & Atanu Biswas & Wasimul Bari, 2005. "Marginal Regression for Binary Longitudinal Data in Adaptive Clinical Trials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 93-113, March.
    2. Lanju Zhang & William F. Rosenberger, 2006. "Response-Adaptive Randomization for Clinical Trials with Continuous Outcomes," Biometrics, The International Biometric Society, vol. 62(2), pages 562-569, June.
    3. Anthony C. Atkinson & Atanu Biswas, 2005. "Bayesian Adaptive Biased-Coin Designs for Clinical Trials with Normal Responses," Biometrics, The International Biometric Society, vol. 61(1), pages 118-125, March.
    4. William F. Rosenberger & Nigel Stallard & Anastasia Ivanova & Cherice N. Harper & Michelle L. Ricks, 2001. "Optimal Adaptive Designs for Binary Response Trials," Biometrics, The International Biometric Society, vol. 57(3), pages 909-913, September.
    5. Jun Shao & Xinxin Yu & Bob Zhong, 2010. "A theory for testing hypotheses under covariate-adaptive randomization," Biometrika, Biometrika Trust, vol. 97(2), pages 347-360.
    6. Hu, Feifang & Rosenberger, William F., 2003. "Optimality, Variability, Power: Evaluating Response-Adaptive Randomization Procedures for Treatment Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 671-678, January.
    7. Anthony C. Atkinson, 2002. "The comparison of designs for sequential clinical trials with covariate information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 349-373, June.
    8. Lanju Zhang & William F. Rosenberger, 2007. "Response‐adaptive randomization for survival trials: the parametric approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(2), pages 153-165, March.
    9. A. C. Atkinson, 2015. "Optimum designs for two treatments with unequal variances in the presence of covariates," Biometrika, Biometrika Trust, vol. 102(2), pages 494-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 297-310.
    2. Yi, Yanqing, 2013. "Exact statistical power for response adaptive designs," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 201-209.
    3. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A new inferential approach for response-adaptive clinical trials: the variance-stabilized bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 235-254, March.
    4. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    5. Biswas, Atanu & Bhattacharya, Rahul, 2010. "An optimal response-adaptive design with dual constraints," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 177-185, February.
    6. Anna Paganoni & Piercesare Secchi, 2007. "A numerical study for comparing two response-adaptive designs for continuous treatment effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 321-346, November.
    7. Uttam Bandyopadhyay & Atanu Biswas, 2018. "Fixed-width confidence interval for covariate-adjusted response-adaptive designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 353-371, April.
    8. Uttam Bandyopadhyay & Rahul Bhattacharya, 2009. "Response adaptive procedures with dual optimality," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 353-367, August.
    9. Uttam Bandyopadhyay & Atanu Biswas & Rahul Bhattacharya, 2009. "Drop-the-loser design in the presence of covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 1-15, January.
    10. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A simple solution to the inadequacy of asymptotic likelihood-based inference for response-adaptive clinical trials," Statistical Papers, Springer, vol. 63(1), pages 157-180, February.
    11. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    12. Guiteras, Raymond P. & Levine, David I. & Polley, Thomas H., 2016. "The pursuit of balance in sequential randomized trials," Development Engineering, Elsevier, vol. 1(C), pages 12-25.
    13. Jennifer Proper & Thomas A. Murray, 2023. "An alternative metric for evaluating the potential patient benefit of response‐adaptive randomization procedures," Biometrics, The International Biometric Society, vol. 79(2), pages 1433-1445, June.
    14. Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
    15. Chambaz Antoine & van der Laan Mark J., 2011. "Targeting the Optimal Design in Randomized Clinical Trials with Binary Outcomes and No Covariate: Theoretical Study," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, January.
    16. Lanju Zhang & William F. Rosenberger, 2006. "Response-Adaptive Randomization for Clinical Trials with Continuous Outcomes," Biometrics, The International Biometric Society, vol. 62(2), pages 562-569, June.
    17. Biswas, Atanu & Bhattacharya, Rahul, 2011. "Optimal response-adaptive allocation designs in phase III clinical trials: Incorporating ethics in optimality," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1155-1160, August.
    18. Belmiro P. M. Duarte & Anthony C. Atkinson & David Pedrosa & Marlena van Munster, 2024. "Compound Optimum Designs for Clinical Trials in Personalized Medicine," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    19. Yi, Yanqing & Wang, Xikui, 2023. "A Markov decision process for response adaptive designs," Econometrics and Statistics, Elsevier, vol. 25(C), pages 125-133.
    20. Anthony C. Atkinson & Atanu Biswas, 2005. "Bayesian Adaptive Biased-Coin Designs for Clinical Trials with Normal Responses," Biometrics, The International Biometric Society, vol. 61(1), pages 118-125, March.

    More about this item

    Keywords

    biased-coin design; covariate balance; effective number of observations; ethical allocation; equivalence theorem; multivariate DA-optimality; multivariate loss; power skewed allocation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:66761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.