IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p1996-d835196.html
   My bibliography  Save this article

Optimal Weighted Multiple-Testing Procedure for Clinical Trials

Author

Listed:
  • Hanan Hammouri

    (Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan)

  • Marwan Alquran

    (Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan)

  • Ruwa Abdel Muhsen

    (Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan)

  • Jaser Altahat

    (Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan)

Abstract

This paper describes a new method for testing randomized clinical trials with binary outcomes, which combines the O’Brien and Fleming (1979) multiple-testing procedure with optimal allocations and unequal weighted samples simultaneously. The O’Brien and Fleming method of group sequential testing is a simple and effective method with the same Type I error and power as a fixed one-stage chi-square test, with the option to terminate early if one treatment is clearly superior to another. This study modified the O’Brien and Fleming procedure, resulting in a more flexible new procedure, where the optimal allocation assists in allocating more subjects to the winning treatment without compromising the integrity of the study, while unequal weighting allows for different samples to be chosen for different stages of a trial. The new optimal weighted multiple-testing procedure (OWMP), based on simulation studies, is relatively robust to the added features because it showed a high preference for decreasing the Type I error and maintaining the power. In addition, the procedure was illustrated using simulated and real-life examples. The outcomes of the current study suggest that the new procedure is as effective as the original. However, it is more flexible.

Suggested Citation

  • Hanan Hammouri & Marwan Alquran & Ruwa Abdel Muhsen & Jaser Altahat, 2022. "Optimal Weighted Multiple-Testing Procedure for Clinical Trials," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:1996-:d:835196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/1996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/1996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Lehmacher & Gernot Wassmer, 1999. "Adaptive Sample Size Calculations in Group Sequential Trials," Biometrics, The International Biometric Society, vol. 55(4), pages 1286-1290, December.
    2. William F. Rosenberger & Nigel Stallard & Anastasia Ivanova & Cherice N. Harper & Michelle L. Ricks, 2001. "Optimal Adaptive Designs for Binary Response Trials," Biometrics, The International Biometric Society, vol. 57(3), pages 909-913, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanan Hammouri & Mohammed Ali & Marwan Alquran & Areen Alquran & Ruwa Abdel Muhsen & Belal Alomari, 2023. "Adaptive Multiple Testing Procedure for Clinical Trials with Urn Allocation," Mathematics, MDPI, vol. 11(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    2. Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
    3. Guosheng Yin & Yu Shen, 2005. "Adaptive Design and Estimation in Randomized Clinical Trials with Correlated Observations," Biometrics, The International Biometric Society, vol. 61(2), pages 362-369, June.
    4. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A simple solution to the inadequacy of asymptotic likelihood-based inference for response-adaptive clinical trials," Statistical Papers, Springer, vol. 63(1), pages 157-180, February.
    5. René Schmidt & Andreas Faldum & Joachim Gerß, 2015. "Adaptive designs with arbitrary dependence structure based on Fisher’s combination test," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 427-447, September.
    6. P. Bauer, 2006. "Discussions," Biometrics, The International Biometric Society, vol. 62(3), pages 676-678, September.
    7. Jingjing Chen, 2019. "A Note of Adaptive Design in Clinical Trials," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 107-111, August.
    8. Christopher Jennison, 2023. "Discussion on “Adaptive enrichment designs with a continuous biomarker” by N. Stallard," Biometrics, The International Biometric Society, vol. 79(1), pages 26-30, March.
    9. Martin Posch & Peter Bauer, 2000. "Interim Analysis and Sample Size Reassessment," Biometrics, The International Biometric Society, vol. 56(4), pages 1170-1176, December.
    10. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    11. Biswas, Atanu & Bhattacharya, Rahul, 2010. "An optimal response-adaptive design with dual constraints," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 177-185, February.
    12. Georg Gutjahr & Werner Brannath & Peter Bauer, 2011. "An Approach to the Conditional Error Rate Principle with Nuisance Parameters," Biometrics, The International Biometric Society, vol. 67(3), pages 1039-1046, September.
    13. Hans-Helge Müller & Helmut Schäfer, 2001. "Adaptive Group Sequential Designs for Clinical Trials: Combining the Advantages of Adaptive and of Classical Group Sequential Approaches," Biometrics, The International Biometric Society, vol. 57(3), pages 886-891, September.
    14. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.
    15. Jennifer Proper & Thomas A. Murray, 2023. "An alternative metric for evaluating the potential patient benefit of response‐adaptive randomization procedures," Biometrics, The International Biometric Society, vol. 79(2), pages 1433-1445, June.
    16. Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
    17. Mandal, Saumen & Biswas, Atanu & Trandafir, Paula Camelia & Islam Chowdhury, Mohammad Ziaul, 2013. "Optimal target allocation proportion for correlated binary responses in a 2×2 setup," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1991-1997.
    18. Chambaz Antoine & van der Laan Mark J., 2011. "Targeting the Optimal Design in Randomized Clinical Trials with Binary Outcomes and No Covariate: Theoretical Study," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, January.
    19. Jianhua Hu & Hongjian Zhu & Feifang Hu, 2015. "A Unified Family of Covariate-Adjusted Response-Adaptive Designs Based on Efficiency and Ethics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 357-367, March.
    20. Sebastian Irle & Helmut Schäfer, 2012. "Interim Design Modifications in Time-to-Event Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 341-348, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:1996-:d:835196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.