IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v83y2002i1p37-55.html
   My bibliography  Save this article

A Maximal Extension of the Gauss-Markov Theorem and Its Nonlinear Version

Author

Listed:
  • Kariya, Takeaki
  • Kurata, Hiroshi

Abstract

In this paper, first we make a maximal extension of the well-known Gauss-Markov Theorem (GMT) in its linear framework. In particular, the maximal class of distributions of error term for which the GMT holds is derived. Second, we establish a nonlinear version of the maximal GMT and describe some interesting families of distributions of error term for which the nonlinear GMT holds.

Suggested Citation

  • Kariya, Takeaki & Kurata, Hiroshi, 2002. "A Maximal Extension of the Gauss-Markov Theorem and Its Nonlinear Version," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 37-55, October.
  • Handle: RePEc:eee:jmvana:v:83:y:2002:i:1:p:37-55
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92050-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
    2. Berk, Robert & Hwang, Jiunn T., 1989. "Optimality of the least squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 245-254, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albisetti, Isaia & Balabdaoui, Fadoua & Holzmann, Hajo, 2020. "Testing for spherical and elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    2. Heng-Hui Lue, 2015. "An Inverse-regression Method of Dependent Variable Transformation for Dimension Reduction with Non-linear Confounding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 760-774, September.
    3. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).
    4. Maruyama Yuzo, 2003. "A robust generalized Bayes estimator improving on the James-Stein estimator for spherically symmetric distributions," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 69-78, January.
    5. Strobl Eric V. & Visweswaran Shyam, 2016. "Markov Boundary Discovery with Ridge Regularized Linear Models," Journal of Causal Inference, De Gruyter, vol. 4(1), pages 31-48, March.
    6. Kai-Tai Fang & Run-Ze Li, 1997. "Some methods for generating both an NT-net and the uniform distribution on a Stiefel manifold and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 24(1), pages 29-46, March.
    7. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    8. Dong, Yuexiao & Yu, Zhou, 2012. "Dimension reduction for the conditional kth moment via central solution space," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 207-218.
    9. Gneiting, Tilmann, 1998. "On[alpha]-Symmetric Multivariate Characteristic Functions," Journal of Multivariate Analysis, Elsevier, vol. 64(2), pages 131-147, February.
    10. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
    11. Papadatos, Nickos, 2014. "Some counterexamples concerning maximal correlation and linear regression," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 114-117.
    12. Ian Ball, 2019. "Scoring Strategic Agents," Papers 1909.01888, arXiv.org, revised May 2024.
    13. Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
    14. Portier, François & Delyon, Bernard, 2013. "Optimal transformation: A new approach for covering the central subspace," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 84-107.
    15. Gannoun, Ali & Girard, Stephane & Guinot, Christiane & Saracco, Jerome, 2004. "Sliced inverse regression in reference curves estimation," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 103-122, May.
    16. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
    17. Li, Lexin & Dennis Cook, R. & Nachtsheim, Christopher J., 2004. "Cluster-based estimation for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 175-193, August.
    18. Liu, Xuejing & Yu, Zhou & Wen, Xuerong Meggie & Paige, Robert, 2015. "On testing common indices for two multi-index models: A link-free approach," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 75-85.
    19. Lexin Li & Xiangrong Yin, 2008. "Sliced Inverse Regression with Regularizations," Biometrics, The International Biometric Society, vol. 64(1), pages 124-131, March.
    20. Heng-Hui Lue & Bing-Ran You, 2013. "High-dimensional regression analysis with treatment comparisons," Computational Statistics, Springer, vol. 28(3), pages 1299-1317, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:83:y:2002:i:1:p:37-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.