Sliced Inverse Regression with Regularizations
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peide Shi & Chih‐Ling Tsai, 2002. "Regression model selection—a residual likelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 237-252, May.
- Li, Lexin & Dennis Cook, R. & Nachtsheim, Christopher J., 2004. "Cluster-based estimation for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 175-193, August.
- Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yoo, Jae Keun, 2013. "Advances in seeded dimension reduction: Bootstrap criteria and extensions," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 70-79.
- Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Yang Liu & Francesca Chiaromonte & Bing Li, 2017. "Structured Ordinary Least Squares: A Sufficient Dimension Reduction approach for regressions with partitioned predictors and heterogeneous units," Biometrics, The International Biometric Society, vol. 73(2), pages 529-539, June.
- Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
- Lexin Li & Xiangrong Yin, 2008. "The authors replied as follows:," Biometrics, The International Biometric Society, vol. 64(3), pages 984-986, September.
- Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Howard D. Bondell & Lexin Li, 2009. "Shrinkage inverse regression estimation for model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 287-299, January.
- Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
- Marisa Mariani & Shiquan He & Mark McHugh & Mirko Andreoli & Deep Pandya & Steven Sieber & Zheyang Wu & Paul Fiedler & Shohreh Shahabi & Cristiano Ferlini, 2014. "Integrated Multidimensional Analysis Is Required for Accurate Prognostic Biomarkers in Colorectal Cancer," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-17, July.
- C. Bernard‐Michel & L. Gardes & S. Girard, 2008. "A Note on Sliced Inverse Regression with Regularizations," Biometrics, The International Biometric Society, vol. 64(3), pages 982-984, September.
- Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
- Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
- Xiao, Zhen & Zhang, Qi, 2022. "Dimension reduction for block-missing data based on sparse sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Emmanuel Jordy Menvouta & Sven Serneels & Tim Verdonck, 2022. "Sparse dimension reduction based on energy and ball statistics," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 951-975, December.
- Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
- Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao, Zhen & Zhang, Qi, 2022. "Dimension reduction for block-missing data based on sparse sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
- Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
- Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
- Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
- Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018.
"Estimating global bank network connectedness,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2015. "Estimating Global Bank Network Connectedness," Koç University-TUSIAD Economic Research Forum Working Papers 1512, Koc University-TUSIAD Economic Research Forum.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yılmaz, 2017. "Estimating Global Bank Network Connectedness," NBER Working Papers 23140, National Bureau of Economic Research, Inc.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2015. "Estimating Global Bank Network Connectedness," PIER Working Paper Archive 15-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Jul 2015.
- Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
- Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Marie Bessec, 2013.
"Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
- Bessec, M., 2012. "Short-term forecasts of French GDP: a dynamic factor model with targeted predictors," Working papers 409, Banque de France.
- Marie Bessec, 2013. "Short-term forecasts of French GDP: A dynamic factor model with targeted predictors," Post-Print hal-01515605, HAL.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2012.
"Sampling error and double shrinkage estimation of minimum variance portfolios,"
Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2011. "Sampling error and double shrinkage estimation of minimum variance portfolios," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bertrand Candelon & Christophe Hurlin & Sessi Tokpavi, 2012. "Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios," Post-Print hal-01385835, HAL.
- Ardyn Nordstrom, 2021. "Can Interventions Targeting Community Attitudes Improve Education for Marginalized Students? Evidence from a Mixed-Methods Experimental Design in Zimbabwe," Working Paper 1472, Economics Department, Queen's University.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:1:p:124-131. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.