IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v136y2015icp75-85.html
   My bibliography  Save this article

On testing common indices for two multi-index models: A link-free approach

Author

Listed:
  • Liu, Xuejing
  • Yu, Zhou
  • Wen, Xuerong Meggie
  • Paige, Robert

Abstract

We propose a link-free procedure for testing whether two multi-index models share identical indices via the sufficient dimension reduction approach. Test statistics are developed based upon three different sufficient dimension reduction methods: (i) sliced inverse regression, (ii) sliced average variance estimation and (iii) directional regression. The asymptotic null distributions of our test statistics are derived. Monte Carlo studies are performed to investigate the efficacy of our proposed methods. A real-world application is also considered.

Suggested Citation

  • Liu, Xuejing & Yu, Zhou & Wen, Xuerong Meggie & Paige, Robert, 2015. "On testing common indices for two multi-index models: A link-free approach," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 75-85.
  • Handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:75-85
    DOI: 10.1016/j.jmva.2015.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    2. Jae Keun Yoo & R. Dennis Cook, 2007. "Optimal sufficient dimension reduction for the conditional mean in multivariate regression," Biometrika, Biometrika Trust, vol. 94(1), pages 231-242.
    3. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    4. Bentler, Peter M. & Xie, Jun, 2000. "Corrections to test statistics in principal Hessian directions," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 381-389, May.
    5. Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
    6. Yu, Zhou & Zhu, Lixing & Wen, Xuerong Meggie, 2012. "On model-free conditional coordinate tests for regressions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 61-72.
    7. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    8. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    9. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
    10. Xia, Yingcun, 2008. "A Multiple-Index Model and Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1631-1640.
    11. Francesca Chiaromonte & R. Cook, 2002. "Sufficient Dimension Reduction and Graphics in Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 768-795, December.
    12. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
    2. Liu, Xuejing & Huo, Lei & Wen, Xuerong Meggie & Paige, Robert, 2017. "A link-free approach for testing common indices for three or more multi-index models," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 236-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    2. Liu, Xuejing & Huo, Lei & Wen, Xuerong Meggie & Paige, Robert, 2017. "A link-free approach for testing common indices for three or more multi-index models," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 236-245.
    3. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    4. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    5. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    6. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    7. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.
    8. Portier, François & Delyon, Bernard, 2013. "Optimal transformation: A new approach for covering the central subspace," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 84-107.
    9. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    10. Huang, Zhensheng & Pang, Zhen & Zhang, Riquan, 2013. "Adaptive profile-empirical-likelihood inferences for generalized single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 70-82.
    11. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    12. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    14. repec:jss:jstsof:39:i03 is not listed on IDEAS
    15. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    16. Soale, Abdul-Nasah, 2023. "Projection expectile regression for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    17. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    18. Xu Guo & Tao Wang & Lixing Zhu, 2016. "Model checking for parametric single-index models: a dimension reduction model-adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1013-1035, November.
    19. Lexin Li & Liping Zhu & Lixing Zhu, 2011. "Inference on the primary parameter of interest with the aid of dimension reduction estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 59-80, January.
    20. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    21. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:75-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.