IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p760-774.html
   My bibliography  Save this article

An Inverse-regression Method of Dependent Variable Transformation for Dimension Reduction with Non-linear Confounding

Author

Listed:
  • Heng-Hui Lue

Abstract

type="main" xml:id="sjos12135-abs-0001"> Many model-free dimension reduction methods have been developed for high-dimensional regression data but have not paid much attention on problems with non-linear confounding. In this paper, we propose an inverse-regression method of dependent variable transformation for detecting the presence of non-linear confounding. The benefit of using geometrical information from our method is highlighted. A ratio estimation strategy is incorporated in our approach to enhance the interpretation of variable selection. This approach can be implemented not only in principal Hessian directions (PHD) but also in other recently developed dimension reduction methods. Several simulation examples that are reported for illustration and comparisons are made with sliced inverse regression and PHD in ignorance of non-linear confounding. An illustrative application to one real data is also presented.

Suggested Citation

  • Heng-Hui Lue, 2015. "An Inverse-regression Method of Dependent Variable Transformation for Dimension Reduction with Non-linear Confounding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 760-774, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:760-774
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12135
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luke A. Prendergast & Jodie A. Smith, 2010. "Influence Functions for Dimension Reduction Methods: An Example Influence Study of Principal Hessian Direction Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 588-611, December.
    2. Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
    3. Lexin Li, 2007. "Sparse sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 94(3), pages 603-613.
    4. Lexin Li & R. Dennis Cook & Christopher J. Nachtsheim, 2005. "Model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 285-299, April.
    5. Heng-Hui Lue, 2004. "Principal Hessian Directions for regression with measurement error," Biometrika, Biometrika Trust, vol. 91(2), pages 409-423, June.
    6. Yongwu Shao & R. Dennis Cook & Sanford Weisberg, 2007. "Marginal tests with sliced average variance estimation," Biometrika, Biometrika Trust, vol. 94(2), pages 285-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alothman, Ahmad & Dong, Yuexiao & Artemiou, Andreas, 2018. "On dual model-free variable selection with two groups of variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 366-377.
    2. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
    3. Heng-Hui Lue & Bing-Ran You, 2013. "High-dimensional regression analysis with treatment comparisons," Computational Statistics, Springer, vol. 28(3), pages 1299-1317, June.
    4. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    5. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    6. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    7. Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
    8. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    9. Yao, Weixin & Wang, Qin, 2013. "Robust variable selection through MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 42-49.
    10. Bura, E. & Yang, J., 2011. "Dimension estimation in sufficient dimension reduction: A unifying approach," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 130-142, January.
    11. Zeng, Peng, 2011. "A link-free method for testing the significance of predictors," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 550-562, March.
    12. Yu, Zhou & Zhu, Lixing & Wen, Xuerong Meggie, 2012. "On model-free conditional coordinate tests for regressions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 61-72.
    13. Howard D. Bondell & Lexin Li, 2009. "Shrinkage inverse regression estimation for model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 287-299, January.
    14. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
    15. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    16. Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    18. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    19. Zambom, Adriano Zanin & Akritas, Michael G., 2015. "Nonparametric significance testing and group variable selection," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 51-60.
    20. Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:760-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.