IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v112y2012icp207-218.html
   My bibliography  Save this article

Dimension reduction for the conditional kth moment via central solution space

Author

Listed:
  • Dong, Yuexiao
  • Yu, Zhou

Abstract

Sufficient dimension reduction aims at finding transformations of predictor X without losing any regression information of Y versus X. If we are only interested in the information contained in the mean function or the kth moment function of Y given X, estimation of the central mean space or the central kth moment space becomes our focus. However, existing estimators for the central mean space and the central kth moment space require a linearity assumption on the predictor distribution. In this paper, we relax this stringent assumption via the notion of central kth moment solution space. Simulation studies and analysis of the Massachusetts college data set confirm that our proposed estimators of the central kth moment space outperform existing methods for non-elliptically distributed predictors.

Suggested Citation

  • Dong, Yuexiao & Yu, Zhou, 2012. "Dimension reduction for the conditional kth moment via central solution space," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 207-218.
  • Handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:207-218
    DOI: 10.1016/j.jmva.2012.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye Z. & Weiss R.E., 2003. "Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 968-979, January.
    2. Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
    3. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    4. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    5. Yuexiao Dong & Bing Li, 2010. "Dimension reduction for non-elliptically distributed predictors: second-order methods," Biometrika, Biometrika Trust, vol. 97(2), pages 279-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    3. Yu, Zhou & Dong, Yuexiao & Huang, Mian, 2014. "General directional regression," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 94-104.
    4. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    5. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    6. Park, Yujin & Kim, Kyongwon & Yoo, Jae Keun, 2022. "On cross-distance selection algorithm for hybrid sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    7. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    9. Yin, Xiangrong & Cook, R. Dennis, 2006. "Dimension reduction via marginal high moments in regression," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 393-400, February.
    10. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
    11. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.
    12. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    13. Park, Jin-Hong & Bandyopadhyay, Dipankar & Letourneau, Elizabeth, 2014. "Examining deterrence of adult sex crimes: A semi-parametric intervention time-series approach," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 198-207.
    14. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    15. Xue, Yuan & Zhang, Nan & Yin, Xiangrong & Zheng, Haitao, 2017. "Sufficient dimension reduction using Hilbert–Schmidt independence criterion," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 67-78.
    16. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    17. Hilafu, Haileab & Yin, Xiangrong, 2013. "Sufficient dimension reduction in multivariate regressions with categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 139-147.
    18. Ding, Shanshan & Cook, R. Dennis, 2015. "Tensor sliced inverse regression," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 216-231.
    19. Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    20. Yu, Zhou & Dong, Yuexiao & Guo, Ranwei, 2013. "On determining the structural dimension via directional regression," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 987-992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:207-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.