IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v20y1986i2p272-276.html
   My bibliography  Save this article

A characterization of spherical distributions

Author

Listed:
  • Eaton, Morris L.

Abstract

It is shown that when the random vector X in Rn has a mean and when the conditional expectation E(u'Xv'X) = 0 for all vectors u, v [set membership, variant] Rn which satisfy u'v = 0, then the distribution of X is orthogonally invariant. A version of this characterization is also established when X does not have a mean vector.

Suggested Citation

  • Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
  • Handle: RePEc:eee:jmvana:v:20:y:1986:i:2:p:272-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(86)90083-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    2. Li, Lexin & Dennis Cook, R. & Nachtsheim, Christopher J., 2004. "Cluster-based estimation for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 175-193, August.
    3. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
    4. Heng-Hui Lue & Bing-Ran You, 2013. "High-dimensional regression analysis with treatment comparisons," Computational Statistics, Springer, vol. 28(3), pages 1299-1317, June.
    5. Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
    6. Dong, Yuexiao & Yu, Zhou, 2012. "Dimension reduction for the conditional kth moment via central solution space," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 207-218.
    7. Strobl Eric V. & Visweswaran Shyam, 2016. "Markov Boundary Discovery with Ridge Regularized Linear Models," Journal of Causal Inference, De Gruyter, vol. 4(1), pages 31-48, March.
    8. Soale, Abdul-Nasah, 2023. "Projection expectile regression for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    9. Kai-Tai Fang & Run-Ze Li, 1997. "Some methods for generating both an NT-net and the uniform distribution on a Stiefel manifold and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 24(1), pages 29-46, March.
    10. Heng-Hui Lue, 2015. "An Inverse-regression Method of Dependent Variable Transformation for Dimension Reduction with Non-linear Confounding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 760-774, September.
    11. Liu, Xuejing & Yu, Zhou & Wen, Xuerong Meggie & Paige, Robert, 2015. "On testing common indices for two multi-index models: A link-free approach," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 75-85.
    12. Zhao, Junlong & Zhao, Xiuli, 2010. "Dimension reduction using the generalized gradient direction," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1089-1102, April.
    13. Ian Ball, 2019. "Scoring Strategic Agents," Papers 1909.01888, arXiv.org, revised May 2024.
    14. Maruyama Yuzo, 2003. "A robust generalized Bayes estimator improving on the James-Stein estimator for spherically symmetric distributions," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 69-78, January.
    15. Heng-Hui Lue, 2010. "On principal Hessian directions for multivariate response regressions," Computational Statistics, Springer, vol. 25(4), pages 619-632, December.
    16. Gannoun, Ali & Girard, Stephane & Guinot, Christiane & Saracco, Jerome, 2004. "Sliced inverse regression in reference curves estimation," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 103-122, May.
    17. Albisetti, Isaia & Balabdaoui, Fadoua & Holzmann, Hajo, 2020. "Testing for spherical and elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    18. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
    19. Kariya, Takeaki & Kurata, Hiroshi, 2002. "A Maximal Extension of the Gauss-Markov Theorem and Its Nonlinear Version," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 37-55, October.
    20. Portier, François & Delyon, Bernard, 2013. "Optimal transformation: A new approach for covering the central subspace," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 84-107.
    21. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    22. Lexin Li & Xiangrong Yin, 2008. "Sliced Inverse Regression with Regularizations," Biometrics, The International Biometric Society, vol. 64(1), pages 124-131, March.
    23. Papadatos, Nickos, 2014. "Some counterexamples concerning maximal correlation and linear regression," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 114-117.
    24. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:20:y:1986:i:2:p:272-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.