IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v80y2002i1p73-100.html
   My bibliography  Save this article

Prediction from Randomly Right Censored Data

Author

Listed:
  • Kohler, Michael
  • Máthé, Kinga
  • Pintér, Márta

Abstract

Let X be a random vector taking values in d, let Y be a bounded random variable, and let C be a right censoring random variable operating on Y. It is assumed that C is independent of (X, Y), the distribution function of C is continuous, and the support of the distribution of Y is a proper subset of the support of the distribution of C. Given a sample {Xi, min{Yi, Ci}, I[Yi[less-than-or-equals, slant]Ci]} and a vector of covariates X, we want to construct an estimate of Y such that the mean squared error is minimized. Without censoring, i.e., for C=[infinity] almost surely, it is well known that the mean squared error of suitably defined kernel, partitioning, nearest neighbor, least squares, and smoothing spline estimates converges for every distribution of (X, Y) to the optimal value almost surely, if the sample size tends to infinity. In this paper, we modify the above estimates and show that in the random right censoring model described above the same is true for the modified estimates.

Suggested Citation

  • Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
  • Handle: RePEc:eee:jmvana:v:80:y:2002:i:1:p:73-100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91973-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Horvath & Gábor Lugosi, 1996. "A data-dependent skeleton estimate and a scale-sensitive dimension for classification," Economics Working Papers 199, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Györfi, László & Walk, Harro, 1997. "On the strong universal consistency of a recursive regression estimate by Pál Révész," Statistics & Probability Letters, Elsevier, vol. 31(3), pages 177-183, January.
    3. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    4. Carbonez A. & Györfi L. & Meulen E.C. van der, 1995. "Partitioning-Estimates Of A Regression Function Under Random Censoring," Statistics & Risk Modeling, De Gruyter, vol. 13(1), pages 21-38, January.
    5. Györfi L. & Kohler M. & Walk H., 1998. "Weak And Strong Universal Consistency Of Semi-Recursive Kernel And Partitioning Regression Estimates," Statistics & Risk Modeling, De Gruyter, vol. 16(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    2. Ersin Yılmaz & Syed Ejaz Ahmed & Dursun Aydın, 2020. "A-Spline Regression for Fitting a Nonparametric Regression Function with Censored Data," Stats, MDPI, vol. 3(2), pages 1-17, May.
    3. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Messaci, Fatiha, 2010. "Local averaging estimates of the regression function with twice censored data," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1508-1511, October.
    5. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    6. Salah, Khardani & Yousri, Slaoui, 2019. "Nonparametric relative regression under random censorship model," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 116-122.
    7. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    8. Debbarh, Mohammed & Viallon, Vivian, 2008. "Testing additivity in nonparametric regression under random censorship," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2584-2591, November.
    9. Liang, Han-Ying & Li, Deli & Qi, Yongcheng, 2009. "Strong convergence in nonparametric regression with truncated dependent data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 162-174, January.
    10. Kebabi, K. & Laroussi, I. & Messaci, F., 2011. "Least squares estimators of the regression function with twice censored data," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1588-1593, November.
    11. Saâdia Rahmani & Oussama Bouanani, 2023. "Local linear estimation of the conditional cumulative distribution function: Censored functional data case," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 741-769, February.
    12. Mohamed Lemdani & Elias Ould Saïd, 2017. "Nonparametric robust regression estimation for censored data," Statistical Papers, Springer, vol. 58(2), pages 505-525, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    2. Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2006. "Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 311-323, February.
    3. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    4. Matthias Hansmann & Michael Kohler & Harro Walk, 2019. "On the strong universal consistency of local averaging regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1233-1263, October.
    5. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    6. Michael Kohler, 2002. "Universal Consistency of Local Polynomial Kernel Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 879-899, December.
    7. Harro Walk, 2005. "Strong universal consistency of smooth kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 665-685, December.
    8. Michael Kohler & Adam Krzyżak & Harro Walk, 2003. "Strong consistency of automatic kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 287-308, June.
    9. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    10. Mojirsheibani, Majid, 2001. "An iterated classification rule based on auxiliary pseudo-predictors," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 125-138, December.
    11. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    12. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    13. Camerlenghi, F. & Capasso, V. & Villa, E., 2014. "On the estimation of the mean density of random closed sets," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 65-88.
    14. Samuel Kotz & Tomasz Kozubowski & Krzysztof Podgórski, 2002. "Maximum Likelihood Estimation of Asymmetric Laplace Parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 816-826, December.
    15. Devroye, Luc & Györfi, Laszlo & Krzyzak, Adam, 1998. "The Hilbert Kernel Regression Estimate," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 209-227, May.
    16. Mojirsheibani, Majid, 2002. "An Almost Surely Optimal Combined Classification Rule," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 28-46, April.
    17. Debbarh, Mohammed & Viallon, Vivian, 2008. "Testing additivity in nonparametric regression under random censorship," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2584-2591, November.
    18. Dippon, J. & Fritz, P. & Kohler, M., 2002. "A statistical approach to case based reasoning, with application to breast cancer data," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 579-602, September.
    19. Fischer, Aurélie, 2010. "Quantization and clustering with Bregman divergences," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2207-2221, October.
    20. Kohler, Michael & Krzyzak, Adam, 2007. "Asymptotic confidence intervals for Poisson regression," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1072-1094, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:80:y:2002:i:1:p:73-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.