IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v31y1997i3p177-183.html
   My bibliography  Save this article

On the strong universal consistency of a recursive regression estimate by Pál Révész

Author

Listed:
  • Györfi, László
  • Walk, Harro

Abstract

A result is presented concerning the strong universal consistency of a recursive kernel-type regression function estimate introduced by P. Révész.

Suggested Citation

  • Györfi, László & Walk, Harro, 1997. "On the strong universal consistency of a recursive regression estimate by Pál Révész," Statistics & Probability Letters, Elsevier, vol. 31(3), pages 177-183, January.
  • Handle: RePEc:eee:stapro:v:31:y:1997:i:3:p:177-183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00030-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greblicki, Wlodzimierz & Pawlak, Miroslaw, 1987. "Necessary and sufficient consistency conditions for a recursive kernel regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 23(1), pages 67-76, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harro Walk, 2005. "Strong universal consistency of smooth kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 665-685, December.
    2. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    3. Kohler, Michael & Krzyzak, Adam, 2007. "Asymptotic confidence intervals for Poisson regression," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1072-1094, May.
    4. Matthias Hansmann & Michael Kohler & Harro Walk, 2019. "On the strong universal consistency of local averaging regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1233-1263, October.
    5. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    6. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    7. Devroye, Luc & Felber, Tina & Kohler, Michael & Krzyżak, Adam, 2012. "L1-consistent estimation of the density of residuals in random design regression models," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 173-179.
    8. Samuel Kotz & Tomasz Kozubowski & Krzysztof Podgórski, 2002. "Maximum Likelihood Estimation of Asymmetric Laplace Parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 816-826, December.
    9. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    10. Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2006. "Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 311-323, February.
    11. Kozek, Andrzej S. & Pawlak, Miroslaw, 2002. "Distribution-free consistency of kernel non-parametric M-estimators," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 343-353, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboubacar Amiri, 2013. "Asymptotic normality of recursive estimators under strong mixing conditions," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 81-96, July.
    2. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    3. Juan Vilar-Fernández & José Vilar-Fernández, 2000. "Recursive local polynomial regression under dependence conditions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(1), pages 209-232, June.
    4. Harro Walk, 2001. "Strong Universal Pointwise Consistency of Recursive Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 691-707, December.
    5. Miroslaw Pawlak, 1991. "On the almost everywhere properties of the kernel regression estimate," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 311-326, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:31:y:1997:i:3:p:177-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.