Weak And Strong Universal Consistency Of Semi-Recursive Kernel And Partitioning Regression Estimates
Author
Abstract
Suggested Citation
DOI: 10.1524/strm.1998.16.1.1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Harro Walk, 2005. "Strong universal consistency of smooth kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 665-685, December.
- Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
- Michael Kohler & Adam Krzyżak & Harro Walk, 2003. "Strong consistency of automatic kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 287-308, June.
- Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
- Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
- Michael Kohler, 2002. "Universal Consistency of Local Polynomial Kernel Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 879-899, December.
- Liang, Han-Ying & Li, Deli & Qi, Yongcheng, 2009. "Strong convergence in nonparametric regression with truncated dependent data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 162-174, January.
- Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
- Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2006. "Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 311-323, February.
- Harro Walk, 2001. "Strong Universal Pointwise Consistency of Recursive Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 691-707, December.
- Matthias Hansmann & Michael Kohler & Harro Walk, 2019. "On the strong universal consistency of local averaging regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1233-1263, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:16:y:1998:i:1:p:1-18:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.