IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v55y2003i2p287-308.html
   My bibliography  Save this article

Strong consistency of automatic kernel regression estimates

Author

Listed:
  • Michael Kohler
  • Adam Krzyżak
  • Harro Walk

Abstract

No abstract is available for this item.

Suggested Citation

  • Michael Kohler & Adam Krzyżak & Harro Walk, 2003. "Strong consistency of automatic kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 287-308, June.
  • Handle: RePEc:spr:aistmt:v:55:y:2003:i:2:p:287-308
    DOI: 10.1007/BF02530500
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02530500
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02530500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    2. Hamers, Michael & Kohler, Michael, 2003. "A bound on the expected maximal deviation of averages from their means," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 137-144, April.
    3. Györfi L. & Kohler M. & Walk H., 1998. "Weak And Strong Universal Consistency Of Semi-Recursive Kernel And Partitioning Regression Estimates," Statistics & Risk Modeling, De Gruyter, vol. 16(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    2. Timothy Reese & Majid Mojirsheibani, 2017. "On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 81-112, March.
    3. Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2011. "Estimation of the essential supremum of a regression function," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 685-693, June.
    4. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
    5. Matthias Hansmann & Michael Kohler & Harro Walk, 2019. "On the strong universal consistency of local averaging regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1233-1263, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    2. Michael Kohler, 2002. "Universal Consistency of Local Polynomial Kernel Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 879-899, December.
    3. Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2006. "Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 311-323, February.
    4. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    5. Matthias Hansmann & Michael Kohler & Harro Walk, 2019. "On the strong universal consistency of local averaging regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1233-1263, October.
    6. Harro Walk, 2005. "Strong universal consistency of smooth kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 665-685, December.
    7. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    8. Harro Walk, 2001. "Strong Universal Pointwise Consistency of Recursive Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 691-707, December.
    9. Liang, Han-Ying & Li, Deli & Qi, Yongcheng, 2009. "Strong convergence in nonparametric regression with truncated dependent data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 162-174, January.
    10. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    11. Michael Hamers & Michael Kohler, 2006. "Nonasymptotic Bounds on the L 2 Error of Neural Network Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 131-151, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:55:y:2003:i:2:p:287-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.