IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i9p2207-2221.html
   My bibliography  Save this article

Quantization and clustering with Bregman divergences

Author

Listed:
  • Fischer, Aurélie

Abstract

This paper deals with the problem of quantization of a random variable X taking values in a separable and reflexive Banach space, and with the related question of clustering independent random observations distributed as X. To this end, we use a quantization scheme with a class of distortion measures called Bregman divergences, and provide conditions ensuring the existence of an optimal quantizer and an empirically optimal quantizer. Rates of convergence are also discussed.

Suggested Citation

  • Fischer, Aurélie, 2010. "Quantization and clustering with Bregman divergences," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2207-2221, October.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2207-2221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00115-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Horvath & Gábor Lugosi, 1996. "A data-dependent skeleton estimate and a scale-sensitive dimension for classification," Economics Working Papers 199, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Y. Alber & D. Butnariu, 1997. "Convergence of Bregman Projection Methods for Solving Consistent Convex Feasibility Problems in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 33-61, January.
    3. Peter L. Bartlett & Stéphane Boucheron & Gábor Lugosi, 2000. "Model selection and error estimation," Economics Working Papers 508, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katzur, Alexander & Kamps, Udo, 2016. "Classification into Kullback–Leibler balls in exponential families," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 75-90.
    2. Isabelle Charlier & Davy Paindaveine, 2014. "Conditional Quantile Estimation through Optimal Quantization," Working Papers ECARES ECARES 2014-28, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojirsheibani, Majid, 2001. "An iterated classification rule based on auxiliary pseudo-predictors," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 125-138, December.
    2. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    3. Juan Enrique Martínez-Legaz & Maryam Tamadoni Jahromi & Eskandar Naraghirad, 2022. "On Bregman-Type Distances and Their Associated Projection Mappings," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 107-117, June.
    4. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    5. Daudin, Jean-Jacques & Mary-Huard, Tristan, 2008. "Estimation of the conditional risk in classification: The swapping method," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3220-3232, February.
    6. Camerlenghi, F. & Capasso, V. & Villa, E., 2014. "On the estimation of the mean density of random closed sets," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 65-88.
    7. Cipollini, Francesca & Oneto, Luca & Coraddu, Andrea & Murphy, Alan John & Anguita, Davide, 2018. "Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 12-23.
    8. Hutter, Marcus & Tran, Minh-Ngoc, 2010. "Model selection with the Loss Rank Principle," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1288-1306, May.
    9. Gaurav Mittal & Ankik Kumar Giri, 2022. "Novel Multi-level Projected Iteration to Solve Inverse Problems with Nearly Optimal Accuracy," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 643-680, August.
    10. Olivier Bousquet, 2003. "New approaches to statistical learning theory," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 371-389, June.
    11. Devroye, Luc & Györfi, Laszlo & Krzyzak, Adam, 1998. "The Hilbert Kernel Regression Estimate," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 209-227, May.
    12. Mojirsheibani, Majid, 2002. "An Almost Surely Optimal Combined Classification Rule," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 28-46, April.
    13. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    14. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    15. Boumaza, Rachid, 2004. "Discriminant analysis with independently repeated multivariate measurements: an L2 approach," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 823-843, November.
    16. M. B. Lee & S. H. Park, 2004. "Convergence of Sequential Parafirmly Nonexpansive Mappings in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 549-571, December.
    17. Biau, Gérard & Devroye, Luc, 2005. "Density estimation by the penalized combinatorial method," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 196-208, May.
    18. Alessio Sancetta, 2010. "Bootstrap model selection for possibly dependent and heterogeneous data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 515-546, June.
    19. Mary-Huard, Tristan & Robin, Stéphane & Daudin, Jean-Jacques, 2007. "A penalized criterion for variable selection in classification," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 695-705, April.
    20. Jiun-Hua Su, 2019. "Model Selection in Utility-Maximizing Binary Prediction," Papers 1903.00716, arXiv.org, revised Jul 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2207-2221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.