IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v3y2020i2p11-136d364587.html
   My bibliography  Save this article

A-Spline Regression for Fitting a Nonparametric Regression Function with Censored Data

Author

Listed:
  • Ersin Yılmaz

    (Mugla Sitki Kocman University, Faculty of Science, Statistics, Muğla 48000, Turkey)

  • Syed Ejaz Ahmed

    (Faculty of Science, Mathematics and Statistics, Brock University, Niagara Region, St. Catharines, ON L2S 3A1, Canada)

  • Dursun Aydın

    (Mugla Sitki Kocman University, Faculty of Science, Statistics, Muğla 48000, Turkey)

Abstract

This paper aims to solve the problem of fitting a nonparametric regression function with right-censored data. In general, issues of censorship in the response variable are solved by synthetic data transformation based on the Kaplan–Meier estimator in the literature. In the context of synthetic data, there have been different studies on the estimation of right-censored nonparametric regression models based on smoothing splines, regression splines, kernel smoothing, local polynomials, and so on. It should be emphasized that synthetic data transformation manipulates the observations because it assigns zero values to censored data points and increases the size of the observations. Thus, an irregularly distributed dataset is obtained. We claim that adaptive spline (A-spline) regression has the potential to deal with this irregular dataset more easily than the smoothing techniques mentioned here, due to the freedom to determine the degree of the spline, as well as the number and location of the knots. The theoretical properties of A-splines with synthetic data are detailed in this paper. Additionally, we support our claim with numerical studies, including a simulation study and a real-world data example.

Suggested Citation

  • Ersin Yılmaz & Syed Ejaz Ahmed & Dursun Aydın, 2020. "A-Spline Regression for Fitting a Nonparametric Regression Function with Censored Data," Stats, MDPI, vol. 3(2), pages 1-17, May.
  • Handle: RePEc:gam:jstats:v:3:y:2020:i:2:p:11-136:d:364587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/3/2/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/3/2/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    2. Anouar El Ghouch & Ingrid Van Keilegom, 2008. "Non‐parametric Regression with Dependent Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 228-247, June.
    3. Florian Frommlet & Grégory Nuel, 2016. "An Adaptive Ridge Procedure for L0 Regularization," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-23, February.
    4. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    5. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    6. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Hendrickx & P. Janssen & A. Verhasselt, 2018. "Penalized spline estimation in varying coefficient models with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 871-895, December.
    2. Dursun Aydın & Ersin Yılmaz, 2021. "Semiparametric modeling of the right-censored time-series based on different censorship solution techniques," Empirical Economics, Springer, vol. 61(4), pages 2143-2172, October.
    3. Bao, Yanchun & He, Shuyuan & Mei, Changlin, 2007. "The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6488-6497, August.
    4. Jeongjin Lee & Taehwa Choi & Sangbum Choi, 2024. "Censored broken adaptive ridge regression in high-dimension," Computational Statistics, Springer, vol. 39(6), pages 3457-3482, September.
    5. Saâdia Rahmani & Oussama Bouanani, 2023. "Local linear estimation of the conditional cumulative distribution function: Censored functional data case," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 741-769, February.
    6. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    7. Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    8. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    9. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    10. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    11. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    12. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    13. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    14. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    15. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    16. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    17. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    18. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    19. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    20. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:3:y:2020:i:2:p:11-136:d:364587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.