IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v58y2002i4p343-353.html
   My bibliography  Save this article

Distribution-free consistency of kernel non-parametric M-estimators

Author

Listed:
  • Kozek, Andrzej S.
  • Pawlak, Miroslaw

Abstract

We prove that in the case of independent and identically distributed random vectors (Xi,Yi) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X,Y). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y)=y the conditional M-functional coincides with the L1-functional and with the conditional median.

Suggested Citation

  • Kozek, Andrzej S. & Pawlak, Miroslaw, 2002. "Distribution-free consistency of kernel non-parametric M-estimators," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 343-353, July.
  • Handle: RePEc:eee:stapro:v:58:y:2002:i:4:p:343-353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00106-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Györfi, László & Walk, Harro, 1997. "On the strong universal consistency of a recursive regression estimate by Pál Révész," Statistics & Probability Letters, Elsevier, vol. 31(3), pages 177-183, January.
    2. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    2. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    3. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    4. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    5. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    6. Graciela Boente & Alejandra Martínez, 2017. "Marginal integration M-estimators for additive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 231-260, June.
    7. Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2010. "On a robust local estimator for the scale function in heteroscedastic nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1185-1195, August.
    8. Azzedine, Nadjia & Laksaci, Ali & Ould-Saïd, Elias, 2008. "On robust nonparametric regression estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3216-3221, December.
    9. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    10. Beran, Jan & Ghosh, Sucharita & Sibbertsen, Philipp, 2000. "Nonparametric M-estimation with long-memory errors," Technical Reports 2000,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Samuel Kotz & Tomasz Kozubowski & Krzysztof Podgórski, 2002. "Maximum Likelihood Estimation of Asymmetric Laplace Parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 816-826, December.
    12. Graciela Boente & Alejandra Martínez & Matías Salibián-Barrera, 2017. "Robust estimators for additive models using backfitting," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 744-767, October.
    13. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    14. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    15. Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
    16. Kohler, Michael & Krzyzak, Adam, 2007. "Asymptotic confidence intervals for Poisson regression," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1072-1094, May.
    17. Harro Walk, 2005. "Strong universal consistency of smooth kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 665-685, December.
    18. Boente, Graciela & Vahnovan, Alejandra, 2015. "Strong convergence of robust equivariant nonparametric functional regression estimators," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 1-11.
    19. Ju, Xiaomeng & Salibián-Barrera, Matías, 2021. "Robust boosting for regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    20. Boente, Graciela & Martínez, Alejandra Mercedes, 2023. "A robust spline approach in partially linear additive models," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:58:y:2002:i:4:p:343-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.