IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000459.html
   My bibliography  Save this article

Bias correction for kernel density estimation with spherical data

Author

Listed:
  • Tsuruta, Yasuhito

Abstract

Kernel density estimations with spherical data can flexibly estimate the shape of an underlying density, including rotationally symmetric, skewed, and multimodal distributions. Standard estimators are generally based on rotationally symmetric kernel functions such as the von Mises kernel function. Unfortunately, their mean integrated squared error does not have root-n consistency and increasing the dimension slows its convergence rate. Therefore, this study aims to improve its accuracy by correcting this bias. It proposes bias correction methods by applying the generalized jackknifing method that can be generated from the von Mises kernel function. We also obtain the asymptotic mean integrated squared errors of the proposed estimators. We find that the convergence rates of the proposed estimators are higher than those of previous estimators. Further, a numerical experiment shows that the proposed estimators perform better than the von Mises kernel density estimators in finite samples in scenarios that are mixtures of von Mises densities.

Suggested Citation

  • Tsuruta, Yasuhito, 2024. "Bias correction for kernel density estimation with spherical data," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000459
    DOI: 10.1016/j.jmva.2024.105338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.