IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v30y2003i2p415-427.html
   My bibliography  Save this article

Correction of Density Estimators that are not Densities

Author

Listed:
  • Ingrid K. Glad
  • Nils Lid Hjort
  • Nikolai G. Ushakov

Abstract

. Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement‐for‐free procedure can, in particular, be applied for higher‐order kernel estimators, classes of modern h4 bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k‐NN estimator, orthogonal expansion estimators, and for various recently developed semi‐parametric density estimators.

Suggested Citation

  • Ingrid K. Glad & Nils Lid Hjort & Nikolai G. Ushakov, 2003. "Correction of Density Estimators that are not Densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 415-427, June.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:2:p:415-427
    DOI: 10.1111/1467-9469.00339
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00339
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    2. Olivier Thas, 2009. "Comments on: Goodness-of-fit tests in mixed modes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 260-264, August.
    3. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
    4. Marco Marzio & Stefania Fensore & Agnese Panzera & Charles C. Taylor, 2018. "Circular local likelihood," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 921-945, December.
    5. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    6. Sayed A. Mostafa & Ibrahim A. Ahmad, 2019. "Kernel density estimation from complex surveys in the presence of complete auxiliary information," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 295-338, April.
    7. Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    8. Chacón, José E. & Monfort, Pablo & Tenreiro, Carlos, 2014. "Fourier methods for smooth distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 223-230.
    9. Shota Gugushvili & Bert van Es & Peter Spreij, 2011. "Deconvolution for an atomic distribution: rates of convergence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1003-1029.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:2:p:415-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.