IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i3d10.1007_s13253-023-00543-4.html
   My bibliography  Save this article

Estimation and Clustering of Directional Wave Spectra

Author

Listed:
  • Zihao Wu

    (National University of Singapore)

  • Carolina Euan

    (Lancaster University)

  • Rosa M. Crujeiras

    (Universidade de Santiago de Compostela)

  • Ying Sun

    (King Abdullah University of Science and Technology)

Abstract

The directional wave spectrum (DWS) describes the energy of sea waves as a function of frequency and direction. It provides useful information for marine studies and guides the design of maritime structures. One of the challenges in the statistical estimation of DWS is to account for the circular nature of direction. To address this issue, this paper considers the 1-dimensional case of the direction-only DWS (DWSd) and applies the circular regression to smooth the DWSd observations. This paper then improves an existing clustering algorithm by incorporating circular smoothing in the clustering algorithm, automating the determination of the optimal number of clusters, and designing a more appropriate smoothing parameter selection procedure for data with correlated errors. Our simulation studies reveal an improvement in the performance of estimating the underlying DWSd using the circular smoother. Finally, the linear and circular smoothers are compared by clustering two real datasets, one from the Sofar Ocean network and the second from a buoy located at the Red Sea. For the Sofar Ocean data, clustering with the two smoothers results in different number of clusters. For the Red Sea data, a cluster with a peak at the boundary is only identified when the circular smoother is used. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Zihao Wu & Carolina Euan & Rosa M. Crujeiras & Ying Sun, 2023. "Estimation and Clustering of Directional Wave Spectra," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 502-525, September.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:3:d:10.1007_s13253-023-00543-4
    DOI: 10.1007/s13253-023-00543-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00543-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00543-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    2. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    3. Di Marzio, Marco & Panzera, Agnese & Taylor, Charles C., 2009. "Local polynomial regression for circular predictors," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2066-2075, October.
    4. Ribeiro, P.J.C. & Henriques, J.C.C. & Campuzano, F.J. & Gato, L.M.C. & Falcão, A.F.O., 2020. "A new directional wave spectra characterization for offshore renewable energy applications," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    2. Claudio Durastanti, 2016. "Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 651-673, November.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Alonso González, Pablo, 2013. "Dependency evolution in Spanish disabled population : a functional data analysis approach," DES - Working Papers. Statistics and Econometrics. WS ws130403, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Tsuruta, Yasuhito, 2024. "Bias correction for kernel density estimation with spherical data," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    6. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    7. Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    9. repec:cte:wsrepe:24606 is not listed on IDEAS
    10. Zhou, Xinyu & Ma, Yijia & Wu, Wei, 2023. "Statistical depth for point process via the isometric log-ratio transformation," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Johan Debayle & Vesna Gotovac Ðogaš & Kateřina Helisová & Jakub Staněk & Markéta Zikmundová, 2021. "Assessing Similarity of Random sets via Skeletons," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 471-490, June.
    12. Daniel Rojas-Diaz & Alexandra Catano-Lopez & Carlos M. Vélez & Santiago Ortiz & Henry Laniado, 2024. "Confidence sub-contour box: an alternative to traditional confidence intervals," Computational Statistics, Springer, vol. 39(5), pages 2821-2858, July.
    13. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
    14. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    15. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    16. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    18. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    19. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    20. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    21. Tarabelloni Nicholas & Ieva Francesca & Biasi Rachele & Maria Paganoni Anna, 2015. "Use of Depth Measure for Multivariate Functional Data in Disease Prediction: An Application to Electrocardiograph Signals," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 189-201, November.
    22. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:3:d:10.1007_s13253-023-00543-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.