IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i3p956-986.html
   My bibliography  Save this article

Nonparametric estimation of densities on the hypersphere using a parametric guide

Author

Listed:
  • María Alonso‐Pena
  • Gerda Claeskens
  • Irène Gijbels

Abstract

Hyperspherical kernel density estimators (KDE), which use a parametric distribution as a guide, are studied in this paper. The main benefit is that these estimators improve the bias of nonguided kernel density estimators when the parametric guiding distribution is not too far from the true density, while preserving the variance. When using a von Mises‐Fisher density as guide, the proposal performs as well as the classical KDE, even when the guiding model is incorrect, and far from the true distribution. This benefit is particular for the hyperspherical setting given its compact support, and is in contrast to similar methods for real valued data. Moreover, we deal with the important issue of data‐driven selection of the smoothing parameter. Simulations and real data examples illustrate the finite‐sample performance of the proposed method, also in comparison with other recently proposed estimation methods.

Suggested Citation

  • María Alonso‐Pena & Gerda Claeskens & Irène Gijbels, 2024. "Nonparametric estimation of densities on the hypersphere using a parametric guide," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 956-986, September.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:956-986
    DOI: 10.1111/sjos.12737
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12737
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:956-986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.