Nonparametric estimation of directional highest density regions
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-021-00457-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
- Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
- Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2012. "The Geometry of Nonparametric Filament Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 788-799, June.
- Di Marzio, Marco & Panzera, Agnese & Taylor, Charles C., 2009. "Local polynomial regression for circular predictors," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2066-2075, October.
- Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.
- Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
- Amparo Baíllo & Antonio Cuevas, 2006. "Parametric versus nonparametric tolerance regions in detection problems," Computational Statistics, Springer, vol. 21(3), pages 523-536, December.
- Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
- Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
- Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2001. "Cluster analysis: a further approach based on density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 441-459, June.
- Taylor, Charles C., 2008. "Automatic bandwidth selection for circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3493-3500, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stanislav Nagy & Houyem Demni & Davide Buttarazzi & Giovanni C. Porzio, 2024. "Theory of angular depth for classification of directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 627-662, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
- Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
- Zihao Wu & Carolina Euan & Rosa M. Crujeiras & Ying Sun, 2023. "Estimation and Clustering of Directional Wave Spectra," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 502-525, September.
- Bedouhene Kahina & Zougab Nabil, 2020. "A Bayesian procedure for bandwidth selection in circular kernel density estimation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 69-82, March.
- Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
- Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.
- Berthet, Philippe & Einmahl, John, 2020.
"Cube Root Weak Convergence of Empirical Estimators of a Density Level Set,"
Other publications TiSEM
69103be2-c944-4ca1-b9e1-2, Tilburg University, School of Economics and Management.
- Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Discussion Paper 2020-015, Tilburg University, Center for Economic Research.
- Babacar Diakhate & Hamza Dhaker & Papa Ngom, 2024. "The $$\beta $$ β -divergence for Bandwidth Selection in Circular Kernel Density Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 417-437, September.
- Claudio Durastanti, 2016. "Quantitative central limit theorems for Mexican needlet coefficients on circular Poisson fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 651-673, November.
- Aboubacar Amiri & Baba Thiam & Thomas Verdebout, 2017. "On the Estimation of the Density of a Directional Data Stream," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 249-267, March.
- Oliveira, M. & Crujeiras, R.M. & Rodríguez-Casal, A., 2012. "A plug-in rule for bandwidth selection in circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3898-3908.
- Cholaquidis, Alejandro & Fraiman, Ricardo & Moreno, Leonardo, 2022. "Level set and density estimation on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Marcelo Fernandes & Breno Neri, 2010.
"Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
- Fernandes, Marcelo, 2001. "Nonparametric entropy-based tests of independence between stochastic processes," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 413, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
- Dau, Hai Dang & Laloë, Thomas & Servien, Rémi, 2020. "Exact asymptotic limit for kernel estimation of regression level sets," Statistics & Probability Letters, Elsevier, vol. 161(C).
- Su, Liangjun, 2006. "A simple test for multivariate conditional symmetry," Economics Letters, Elsevier, vol. 93(3), pages 374-378, December.
- Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pavlides, Marios G. & Wellner, Jon A., 2012. "Nonparametric estimation of multivariate scale mixtures of uniform densities," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 71-89.
- Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Tsuruta, Yasuhito, 2024. "Bias correction for kernel density estimation with spherical data," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
More about this item
Keywords
Bootstrap; Confidence regions; Directional data; Hausdorff distance; Highest density regions; Kernel density estimation; Level sets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:16:y:2022:i:3:d:10.1007_s11634-021-00457-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.