Nonparametric multiple regression estimation for circular response
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-020-00736-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lejeune, Michel & Sarda, Pascal, 1992. "Smooth estimators of distribution and density functions," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 457-471, November.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2014.
"A Review and Comparison of Bandwidth Selection Methods for Kernel Regression,"
International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2011. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 95, Courant Research Centre PEG.
- García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
- Gonzalez Manteiga, W. & Martinez Miranda, M. D. & Perez Gonzalez, A., 2004. "The choice of smoothing parameter in nonparametric regression through Wild Bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 487-515, October.
- L. Yang & R. Tschernig, 1999. "Multivariate bandwidth selection for local linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 793-815.
- Masry, Elias, 1996. "Multivariate regression estimation local polynomial fitting for time series," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 81-101, December.
- Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
- Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2014. "Nonparametric Regression for Spherical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 748-763, June.
- Louis-Paul Rivest & Thierry Duchesne & Aurélien Nicosia & Daniel Fortin, 2016. "A general angular regression model for the analysis of data on animal movement in ecology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 445-463, April.
- Jingping Gu & Qi Li & Jui-Chung Yang, 2015. "Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 979-1010, December.
- Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2013. "Non-parametric Regression for Circular Responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 238-255, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
- Jan Koláček & Ivana Horová, 2017. "Bandwidth matrix selectors for kernel regression," Computational Statistics, Springer, vol. 32(3), pages 1027-1046, September.
- Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
- Aboubacar Amiri & Baba Thiam, 2018. "Regression estimation by local polynomial fitting for multivariate data streams," Statistical Papers, Springer, vol. 59(2), pages 813-843, June.
- Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011.
"Estimating features of a distribution from binomial data,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
- Arthur Lewbel & Daniel McFadden & Oliver Linton, 1997. "Estimating Features of a Distribution from Binomial Data," Boston College Working Papers in Economics 442, Boston College Department of Economics, revised 01 Jul 2010.
- Lewbel, Arthur & Linton, Oliver & McFadden, D. L., 2006. "Estimating features of a distribution from binomial data," LSE Research Online Documents on Economics 4418, London School of Economics and Political Science, LSE Library.
- Arthur Lewbel & Oliver Linton & Daniel McFadden, 2001. "Estimating features of a distribution from binomial data," CeMMAP working papers CWP07/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Su, Liangjun & Ullah, Aman, 2008. "Local polynomial estimation of nonparametric simultaneous equations models," Journal of Econometrics, Elsevier, vol. 144(1), pages 193-218, May.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2014.
"A Review and Comparison of Bandwidth Selection Methods for Kernel Regression,"
International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2011. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 95, Courant Research Centre PEG.
- Henderson, Daniel J. & Li, Qi & Parmeter, Christopher F. & Yao, Shuang, 2015.
"Gradient-based smoothing parameter selection for nonparametric regression estimation,"
Journal of Econometrics, Elsevier, vol. 184(2), pages 233-241.
- Daniel J. Henderson & Qi Li & Christopher F. Parmeter, 2013. "Gradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation," Working Papers 2014-01, University of Miami, Department of Economics.
- Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
- Pérez-González, A. & Vilar-Fernández, J.M. & González-Manteiga, W., 2010. "Nonparametric variance function estimation with missing data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1123-1142, May.
- Li, Degui & Simar, Léopold & Zelenyuk, Valentin, 2016.
"Generalized nonparametric smoothing with mixed discrete and continuous data,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 424-444.
- Li, Degui & Simar, Leopold & Zelenyuk, Valentin, 2016. "Generalized nonparametric smoothing with mixed discrete and continuous data," LIDAM Reprints ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2014. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Discussion Papers ISBA 2014047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
- Chan Shen, 2019. "Recursive Differencing for Estimating Semiparametric Models," Departmental Working Papers 201903, Rutgers University, Department of Economics.
- Xu Qin & Huiqun Gao, 2024. "Nonparametric binary regression models with spherical predictors based on the random forests kernel," Computational Statistics, Springer, vol. 39(6), pages 3031-3048, September.
- Rong Liu & Lijian Yang, 2008. "Kernel estimation of multivariate cumulative distribution function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 661-677.
- Delgado, Michael S. & McCloud, Nadine & Kumbhakar, Subal C., 2014. "A generalized empirical model of corruption, foreign direct investment, and growth," Journal of Macroeconomics, Elsevier, vol. 42(C), pages 298-316.
- Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016.
"Historic amenities, income and sorting of households,"
Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
- Koster, Hans R. A. & Rietveld, Piet & Van Ommeren, Jos, 2013. "Historic amenities, income and sorting of households," LSE Research Online Documents on Economics 58433, London School of Economics and Political Science, LSE Library.
- Hans R. A. Koster & Piet Rietveld & Jos Van Ommeren, 2013. "Historic Amenities, Income and Sorting of Households," SERC Discussion Papers 0124, Centre for Economic Performance, LSE.
- Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022.
"Stochastic Frontier Analysis: Foundations and Advances I,"
Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370,
Springer.
- Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances II," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 9, pages 371-408, Springer.
- Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2017. "Stochastic Frontier Analysis: Foundations and Advances," Working Papers 2017-10, University of Miami, Department of Economics.
- Subal C. Kumbhakar & Christopher F. Parameter & Valentin Zelenyuk, 2018. "Stochastic Frontier Analysis: Foundations and Advances," CEPA Working Papers Series WP022018, School of Economics, University of Queensland, Australia.
- Lee, Yoonseok & Mukherjee, Debasri & Ullah, Aman, 2019.
"Nonparametric estimation of the marginal effect in fixed-effect panel data models,"
Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 53-67.
- Aman Ullah & Yoonseok Lee & Debasri Mukherjee, 2018. "Nonparametric Estimation of the Marginal Effect in Fixed-Effect Panel Data Models," Working Papers 201901, University of California at Riverside, Department of Economics.
More about this item
Keywords
Linear–circular regression; Multiple regression; Local polynomial estimators;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:3:d:10.1007_s11749-020-00736-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.