IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v202y2024ics0047259x24000204.html
   My bibliography  Save this article

Online stochastic Newton methods for estimating the geometric median and applications

Author

Listed:
  • Godichon-Baggioni, Antoine
  • Lu, Wei

Abstract

In the context of large samples, a small number of individuals might spoil basic statistical indicators like the mean. It is difficult to detect automatically these atypical individuals, and an alternative strategy is using robust approaches. This paper focuses on estimating the geometric median of a random variable, which is a robust indicator of central tendency. In order to deal with large samples of data arriving sequentially, online stochastic Newton algorithms for estimating the geometric median are introduced and we give their rates of convergence. Since estimates of the median and those of the Hessian matrix can be recursively updated, we also determine confidences intervals of the median in any designated direction and perform online statistical tests.

Suggested Citation

  • Godichon-Baggioni, Antoine & Lu, Wei, 2024. "Online stochastic Newton methods for estimating the geometric median and applications," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000204
    DOI: 10.1016/j.jmva.2024.105313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinrich Fritz & Peter Filzmoser & Christophe Croux, 2012. "A comparison of algorithms for the multivariate L 1 -median," Computational Statistics, Springer, vol. 27(3), pages 393-410, September.
    2. Cardot, Hervé & Cénac, Peggy & Monnez, Jean-Marie, 2012. "A fast and recursive algorithm for clustering large datasets with k-medians," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1434-1449.
    3. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    4. Godichon-Baggioni, Antoine, 2016. "Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 209-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
    2. Cheng, Guanghui & Xiong, Qiang & Lin, Ruitao, 2024. "Online bootstrap inference for the geometric median," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    3. Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
    4. Mokkadem, Abdelkader & Pelletier, Mariane, 2021. "A compact law of the iterated logarithm for online estimator of hazard rate under random censoring," Statistics & Probability Letters, Elsevier, vol. 178(C).
    5. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    6. Filzmoser, P. & Höppner, S. & Ortner, I. & Serneels, S. & Verdonck, T., 2020. "Cellwise robust M regression," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    7. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    8. Gadat, Sébastien & Panloup, Fabien, 2023. "Optimal non-asymptotic analysis of the Ruppert–Polyak averaging stochastic algorithm," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 312-348.
    9. Vishwajit Hegde & Arvind S. Menon & L. A. Prashanth & Krishna Jagannathan, 2021. "Online Estimation and Optimization of Utility-Based Shortfall Risk," Papers 2111.08805, arXiv.org, revised Nov 2023.
    10. Monnez, Jean-Marie & Skiredj, Abderrahman, 2021. "Widening the scope of an eigenvector stochastic approximation process and application to streaming PCA and related methods," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    11. Johannes von Lindheim, 2023. "Simple approximative algorithms for free-support Wasserstein barycenters," Computational Optimization and Applications, Springer, vol. 85(1), pages 213-246, May.
    12. Godichon-Baggioni, Antoine, 2016. "Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 209-222.
    13. Zhao, Yongning & Pan, Shiji & Zhao, Yuan & Liao, Haohan & Ye, Lin & Zheng, Yingying, 2024. "Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration," Energy, Elsevier, vol. 288(C).
    14. Simone Görner & Christian Kanzow, 2016. "On Newton’s Method for the Fermat–Weber Location Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 107-118, July.
    15. Oluwasegun Taiwo Ojo & Antonio Fernández Anta & Rosa E. Lillo & Carlo Sguera, 2022. "Detecting and classifying outliers in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 725-760, September.
    16. Gaunand, A. & Hocdé, A. & Lemarié, S. & Matt, M. & Turckheim, E.de, 2015. "How does public agricultural research impact society? A characterization of various patterns," Research Policy, Elsevier, vol. 44(4), pages 849-861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.