IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032413.html
   My bibliography  Save this article

Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration

Author

Listed:
  • Zhao, Yongning
  • Pan, Shiji
  • Zhao, Yuan
  • Liao, Haohan
  • Ye, Lin
  • Zheng, Yingying

Abstract

An ultra-short-term wind power forecasting method based on personalized robust federated learning (PRFL) is proposed to exploit spatio-temporal correlation in a privacy-preserving way to facilitate the collaboration between wind farms. Firstly, standard federated learning (FL) with a bidirectional long short-term memory neural network (Bi-LSTM) as the underlying forecasting model is adopted as the primary framework. Secondly, to mitigate FL's vulnerability to anomalies, a Geometric median based federated aggregation scheme is utilized instead of the traditional FedAvg algorithm, enabling enhancement of the robustness against anomalous updates from individual wind farms. Finally, a personalized federated learning (PFL) strategy incorporating transfer learning is proposed to alleviate the challenge of limited model applicability due to data heterogeneity in conventional FL approaches. The case study involving 30 wind farms demonstrates the superior forecasting accuracy of PRFL compared to traditional FL-based methods. In particular, PRFL yields relative improvements ranging from 2.67 % to 7.49 % compared to local forecasting method without spatial correlation, while ensuring data privacy through the local storage of raw data at each collaborative wind farm. Furthermore, empirical examinations incorporating artificially induced anomalous scenarios affirm PRFL's outstanding resilience in handling anomalies during collaborative training, surpassing the capabilities offered by conventional approaches.

Suggested Citation

  • Zhao, Yongning & Pan, Shiji & Zhao, Yuan & Liao, Haohan & Ye, Lin & Zheng, Yingying, 2024. "Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032413
    DOI: 10.1016/j.energy.2023.129847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yixing & Liu, Bo & Guo, Xiaoyu & Xu, Yiqiao & Ding, Zhengtao, 2023. "Household profile identification for retailers based on personalized federated learning," Energy, Elsevier, vol. 275(C).
    2. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
    5. Gonçalves, Carla & Bessa, Ricardo J. & Pinson, Pierre, 2021. "A critical overview of privacy-preserving approaches for collaborative forecasting," International Journal of Forecasting, Elsevier, vol. 37(1), pages 322-342.
    6. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
    9. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    10. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    11. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    2. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    3. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    4. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    5. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
    6. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    7. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    8. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    9. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    10. Keen Meng Choy & Hwee Kwan Chow, 2004. "Forecasting the Global Electronics Cycle with Leading Indicators: A VAR Approach," Econometric Society 2004 Australasian Meetings 223, Econometric Society.
    11. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    13. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    16. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    17. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    18. Johanna Posch & Fabio Rumler, 2015. "Semi‐Structural Forecasting of UK Inflation Based on the Hybrid New Keynesian Phillips Curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 145-162, March.
    19. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    20. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.