IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v178y2021ics0167715221001486.html
   My bibliography  Save this article

A compact law of the iterated logarithm for online estimator of hazard rate under random censoring

Author

Listed:
  • Mokkadem, Abdelkader
  • Pelletier, Mariane

Abstract

Douma et al. (2018) introduced a recursive kernel estimator of the hazard function in the framework of independent rightly censored data, and studied its weak convergence rate, without giving any result on its strong behavior. The aim of this paper is to establish a compact law of the iterated logarithm for this estimator, which requires an approach in the proof totally different from that used in Douma et al. (2018).

Suggested Citation

  • Mokkadem, Abdelkader & Pelletier, Mariane, 2021. "A compact law of the iterated logarithm for online estimator of hazard rate under random censoring," Statistics & Probability Letters, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:stapro:v:178:y:2021:i:c:s0167715221001486
    DOI: 10.1016/j.spl.2021.109186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, X. J., 1994. "Law of the Logarithm for Density and Hazard Rate Estimation for Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 278-286, May.
    2. Godichon-Baggioni, Antoine, 2016. "Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 209-222.
    3. Diehl, Sabine & Stute, Winfried, 1988. "Kernel density and hazard function estimation in the presence of censoring," Journal of Multivariate Analysis, Elsevier, vol. 25(2), pages 299-310, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junshan Shen & Shuyuan He, 2008. "Empirical likelihood confidence intervals for hazard and density functions under right censorship," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 575-589, September.
    2. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    3. Kitouni, Abderrahim & Boukeloua, Mohamed & Messaci, Fatiha, 2015. "Rate of strong consistency for nonparametric estimators based on twice censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 255-261.
    4. Einmahl, J.H.J. & Deheuvels, P., 2000. "Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications," Other publications TiSEM ac9bbdc0-62f8-4b48-9a84-1, Tilburg University, School of Economics and Management.
    5. Junshan Shen & Shuyuan He, 2007. "Empirical likelihood for the difference of quantiles under censorship," Statistical Papers, Springer, vol. 48(3), pages 437-457, September.
    6. Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
    7. Wang, Qi-Hua, 1999. "Some bounds for the error of an estimator of the hazard function with censored data," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 319-326, October.
    8. Sun, Liuquan & Zhou, Yong, 1998. "Sequential confidence bands for densities under truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 31-41, September.
    9. Gadat, Sébastien & Panloup, Fabien, 2023. "Optimal non-asymptotic analysis of the Ruppert–Polyak averaging stochastic algorithm," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 312-348.
    10. Ülkü Gürler & Jane-Ling Wang, 1993. "Nonparametric estimation of hazard functions and their derivatives under truncation model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 249-264, June.
    11. Cai, Zongwu, 1998. "Kernel Density and Hazard Rate Estimation for Censored Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 23-34, October.
    12. Zhang, Biao, 1998. "A note on the integrated square errors of kernel density estimators under random censorship," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 225-234, July.
    13. Fuxia Cheng, 2017. "Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 1-12, February.
    14. Diallo, Amadou Oury Korbe & Louani, Djamal, 2013. "Moderate and large deviation principles for the hazard rate function kernel estimator under censoring," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 735-743.
    15. Godichon-Baggioni, Antoine & Lu, Wei, 2024. "Online stochastic Newton methods for estimating the geometric median and applications," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    16. Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
    17. Wang, Qihua & Liu, Wei & Liu, Chunling, 2009. "Probability density estimation for survival data with censoring indicators missing at random," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 835-850, May.
    18. Yang, Hanfang & Zhao, Yichuan, 2012. "Smoothed empirical likelihood for ROC curves with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 254-263.
    19. Arcones, Miguel A. & Giné, Evarist, 1995. "On the law of the iterated logarithm for canonical U-statistics and processes," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 217-245, August.
    20. Talamakrouni, Majda & Van Keilegom, Ingrid & El Ghouch, Anouar, 2016. "Parametrically guided nonparametric density and hazard estimation with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 308-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:178:y:2021:i:c:s0167715221001486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.