Optimization techniques for robust multivariate location and scatter estimation
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-015-9833-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Heinrich Fritz & Peter Filzmoser & Christophe Croux, 2012.
"A comparison of algorithms for the multivariate L 1 -median,"
Computational Statistics, Springer, vol. 27(3), pages 393-410, September.
- Fritz, H. & Filzmoser, P. & Croux, C., 2010. "A Comparison of Algorithms for the Multivariate L1-Median," Discussion Paper 2010-106, Tilburg University, Center for Economic Research.
- Ella Roelant & Stefan Aelst & Gert Willems, 2009. "The minimum weighted covariance determinant estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(2), pages 177-204, September.
- Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
- Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
- L. Pitsoulis & G. Zioutas, 2010. "A fast algorithm for robust regression with penalised trimmed squares," Computational Statistics, Springer, vol. 25(4), pages 663-689, December.
- Agostinelli, Claudio & Markatou, Marianthi, 1998. "A one-step robust estimator for regression based on the weighted likelihood reweighting scheme," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 341-350, March.
- Tableman, Mara, 1994. "The influence functions for the least trimmed squares and the least trimmed absolute deviations estimators," Statistics & Probability Letters, Elsevier, vol. 19(4), pages 329-337, March.
- Tableman, Mara, 1994. "The asymptotics of the least trimmed absolute deviations (LTAD) estimator," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 387-398, April.
- G. Zioutas & L. Pitsoulis & A. Avramidis, 2009. "Quadratic mixed integer programming and support vectors for deleting outliers in robust regression," Annals of Operations Research, Springer, vol. 166(1), pages 339-353, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Raymaekers, Jakob & Rousseeuw, Peter, 2019. "A generalized spatial sign covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 94-111.
- Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
- Olive, David J. & Hawkins, Douglas M., 2003. "Robust regression with high coverage," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 259-266, July.
- Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
- Wang, Yong & Fu, Chengqun & Guo, Jie & Yu, Qin, 2016. "A robust regression based on weighted LSSVM and penalized trimmed squaresAuthor-Name: Liu, Jianyong," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 328-334.
- Čížek, Pavel, 2008.
"General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models,"
Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Discussion Paper 2004-130, Tilburg University, Center for Economic Research.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Other publications TiSEM 646b48cc-6bdc-4b93-bc20-7, Tilburg University, School of Economics and Management.
- Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
- Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
- Cizek, P., 2004.
"Asymptotics of Least Trimmed Squares Regression,"
Other publications TiSEM
dab5d551-aca6-40bf-b92e-c, Tilburg University, School of Economics and Management.
- Cizek, P., 2004. "Asymptotics of Least Trimmed Squares Regression," Discussion Paper 2004-72, Tilburg University, Center for Economic Research.
- Cizek, P., 2007.
"General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaces DP 2007-1),"
Other publications TiSEM
eeccf622-dd18-41d4-a2f9-b, Tilburg University, School of Economics and Management.
- Cizek, P., 2007. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaces DP 2007-1)," Discussion Paper 2007-65, Tilburg University, Center for Economic Research.
- Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
- Junlong Zhao & Chao Liu & Lu Niu & Chenlei Leng, 2019. "Multiple influential point detection in high dimensional regression spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 385-408, April.
- Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
- Filzmoser, P. & Höppner, S. & Ortner, I. & Serneels, S. & Verdonck, T., 2020. "Cellwise robust M regression," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- Beste Hamiye Beyaztas & Soutir Bandyopadhyay & Abhijit Mandal, 2021. "A robust specification test in linear panel data models," Papers 2104.07723, arXiv.org.
- Mafusalov, Alexander & Uryasev, Stan, 2016. "CVaR (superquantile) norm: Stochastic case," European Journal of Operational Research, Elsevier, vol. 249(1), pages 200-208.
- Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Abdul Wahid & Dost Muhammad Khan & Ijaz Hussain, 2017. "Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
- Furno, Marilena, 1998. "Estimating the variance of the LAD regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 11-26, March.
- P. Navarro-Esteban & J. A. Cuesta-Albertos, 2021. "High-dimensional outlier detection using random projections," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 908-934, December.
- D. Rosadi & P. Filzmoser, 2019. "Robust second-order least-squares estimation for regression models with autoregressive errors," Statistical Papers, Springer, vol. 60(1), pages 105-122, February.
More about this item
Keywords
Robust covariance and location; Least trimming; Outlier detection; Large scale data sets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:31:y:2016:i:4:d:10.1007_s10878-015-9833-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.