IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v196y2023ics0047259x23000295.html
   My bibliography  Save this article

Finite sample t-tests for high-dimensional means

Author

Listed:
  • Li, Jun

Abstract

When sample sizes are small, it becomes challenging for an asymptotic test requiring diverging sample sizes to maintain an accurate Type I error rate. In this paper, we consider one-sample, two-sample and ANOVA tests for mean vectors when data are high-dimensional but sample sizes are very small. We establish asymptotic t-distributions of the proposed U-statistics, which only require data dimensionality to diverge but sample sizes to be fixed and no less than 3. The proposed tests maintain accurate Type I error rates for a wide range of sample sizes and data dimensionality. Moreover, the tests are nonparametric and can be applied to data which are normally distributed or heavy-tailed. Simulation studies confirm the theoretical results for the tests. We also apply the proposed tests to an fMRI dataset to demonstrate the practical implementation of the methods.

Suggested Citation

  • Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000295
    DOI: 10.1016/j.jmva.2023.105183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    2. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Lan Wang & Bo Peng & Runze Li, 2015. "A High-Dimensional Nonparametric Multivariate Test for Mean Vector," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1658-1669, December.
    4. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    5. Gongjun Xu & Lifeng Lin & Peng Wei & Wei Pan, 2016. "An adaptive two-sample test for high-dimensional means," Biometrika, Biometrika Trust, vol. 103(3), pages 609-624.
    6. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    7. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    8. Karl Bruce Gregory & Raymond J. Carroll & Veerabhadran Baladandayuthapani & Soumendra N. Lahiri, 2015. "A Two-Sample Test for Equality of Means in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 837-849, June.
    9. Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
    10. Changcheng Li Runze Li, 2022. "Linear Hypothesis Testing in Linear Models With High-Dimensional Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1738-1750, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yu & Feng, Long, 2024. "Adaptive rank-based tests for high dimensional mean problems," Statistics & Probability Letters, Elsevier, vol. 214(C).
    2. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Ghosh, Santu & Ayyala, Deepak Nag & Hellebuyck, Rafael, 2021. "Two-sample high dimensional mean test based on prepivots," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    5. Zhang, Huaiyu & Wang, Haiyan, 2021. "A more powerful test of equality of high-dimensional two-sample means," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    6. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    7. Tzviel Frostig & Yoav Benjamini, 2022. "Testing the equality of multivariate means when $$p>n$$ p > n by combining the Hotelling and Simes tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 390-415, June.
    8. Feng, Long & Sun, Fasheng, 2015. "A note on high-dimensional two-sample test," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 29-36.
    9. Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    10. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    11. Yuanyuan Jiang & Xingzhong Xu, 2022. "A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    12. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    13. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    14. Wang, Wei & Lin, Nan & Tang, Xiang, 2019. "Robust two-sample test of high-dimensional mean vectors under dependence," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 312-329.
    15. Ouyang, Yanyan & Liu, Jiamin & Tong, Tiejun & Xu, Wangli, 2022. "A rank-based high-dimensional test for equality of mean vectors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    17. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    18. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    19. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    20. Zhang, Jie & Pan, Meng, 2016. "A high-dimension two-sample test for the mean using cluster subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.