IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v173y2022ics0167947322000755.html
   My bibliography  Save this article

A rank-based high-dimensional test for equality of mean vectors

Author

Listed:
  • Ouyang, Yanyan
  • Liu, Jiamin
  • Tong, Tiejun
  • Xu, Wangli

Abstract

The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional settings. To overcome the technical challenges in data sorting, the new statistics are constructed by taking the sum of the Wilcoxon signed-rank or Wilcoxon-Mann-Whitney test statistics from each dimension of the data. The asymptotic properties of the proposed test statistics are investigated under the null and local alternative hypotheses. Simulation studies show that the new tests perform as well as the state-of-the-art methods when the high-dimensional data are normally distributed, but they turn out to be more powerful when the normality assumption is violated. Finally, the new testing methods are also applied to a human peripheral blood mononuclear cells gene expression data set for demonstrating their usefulness in practice.

Suggested Citation

  • Ouyang, Yanyan & Liu, Jiamin & Tong, Tiejun & Xu, Wangli, 2022. "A rank-based high-dimensional test for equality of mean vectors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000755
    DOI: 10.1016/j.csda.2022.107495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000755
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    2. Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
    3. Yujun Wu & Marc G. Genton & Leonard A. Stefanski, 2006. "A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data," Biometrics, The International Biometric Society, vol. 62(3), pages 877-885, September.
    4. Timothy L. McMurry & Dimitris N. Politis, 2010. "Banded and tapered estimates for autocovariance matrices and the linear process bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 471-482, November.
    5. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    6. Lan Wang & Bo Peng & Runze Li, 2015. "A High-Dimensional Nonparametric Multivariate Test for Mean Vector," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1658-1669, December.
    7. Zongliang Hu & Tiejun Tong & Marc G. Genton, 2019. "Diagonal likelihood ratio test for equality of mean vectors in high‐dimensional data," Biometrics, The International Biometric Society, vol. 75(1), pages 256-267, March.
    8. Roger S. Zoh & Abhra Sarkar & Raymond J. Carroll & Bani K. Mallick, 2018. "A Powerful Bayesian Test for Equality of Means in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1733-1741, October.
    9. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    10. Karl Bruce Gregory & Raymond J. Carroll & Veerabhadran Baladandayuthapani & Soumendra N. Lahiri, 2015. "A Two-Sample Test for Equality of Means in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 837-849, June.
    11. McMurry, Timothy L & Politis, D N, 2010. "Banded and Tapered Estimates for Autocovariance Matrices and the Linear Process Bootstrap," University of California at San Diego, Economics Working Paper Series qt5h9259mb, Department of Economics, UC San Diego.
    12. Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yu & Feng, Long, 2024. "Adaptive rank-based tests for high dimensional mean problems," Statistics & Probability Letters, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    3. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    4. Tzviel Frostig & Yoav Benjamini, 2022. "Testing the equality of multivariate means when $$p>n$$ p > n by combining the Hotelling and Simes tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 390-415, June.
    5. Zhang, Yu & Feng, Long, 2024. "Adaptive rank-based tests for high dimensional mean problems," Statistics & Probability Letters, Elsevier, vol. 214(C).
    6. Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    7. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    8. Yuanyuan Jiang & Xingzhong Xu, 2022. "A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    9. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Xiao Min & Chen Ting & Huang Kunpeng & Ming Ruixing, 2020. "Optimal Estimation for Power of Variance with Application to Gene-Set Testing," Journal of Systems Science and Information, De Gruyter, vol. 8(6), pages 549-564, December.
    11. Zhang, Huaiyu & Wang, Haiyan, 2021. "A more powerful test of equality of high-dimensional two-sample means," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    12. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    13. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    14. Feng, Long & Sun, Fasheng, 2015. "A note on high-dimensional two-sample test," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 29-36.
    15. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    16. Zongliang Hu & Tiejun Tong & Marc G. Genton, 2019. "Diagonal likelihood ratio test for equality of mean vectors in high‐dimensional data," Biometrics, The International Biometric Society, vol. 75(1), pages 256-267, March.
    17. Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    18. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "A high-dimensional spatial rank test for two-sample location problems," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    19. Zhengbang Li & Fuxiang Liu & Luanjie Zeng & Guoxin Zuo, 2021. "A stationary bootstrap test about two mean vectors comparison with somewhat dense differences and fewer sample size than dimension," Computational Statistics, Springer, vol. 36(2), pages 941-960, June.
    20. Wang, Rui & Xu, Xingzhong, 2018. "On two-sample mean tests under spiked covariances," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 225-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.