IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p1738-1750.html
   My bibliography  Save this article

Linear Hypothesis Testing in Linear Models With High-Dimensional Responses

Author

Listed:
  • Changcheng Li Runze Li

Abstract

In this article, we propose a new projection test for linear hypotheses on regression coefficient matrices in linear models with high-dimensional responses. We systematically study the theoretical properties of the proposed test. We first derive the optimal projection matrix for any given projection dimension to achieve the best power and provide an upper bound for the optimal dimension of projection matrix. We further provide insights into how to construct the optimal projection matrix. One- and two-sample mean problems can be formulated as special cases of linear hypotheses studied in this article. We both theoretically and empirically demonstrate that the proposed test can outperform the existing ones for one- and two-sample mean problems. We conduct Monte Carlo simulation to examine the finite sample performance and illustrate the proposed test by a real data example.

Suggested Citation

  • Changcheng Li Runze Li, 2022. "Linear Hypothesis Testing in Linear Models With High-Dimensional Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1738-1750, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1738-1750
    DOI: 10.1080/01621459.2021.1884561
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1884561
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1884561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1738-1750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.