A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Thulin, Måns, 2014. "A high-dimensional two-sample test for the mean using random subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 26-38.
- Srivastava, Muni S., 2009. "A test for the mean vector with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 518-532, March.
- Roger S. Zoh & Abhra Sarkar & Raymond J. Carroll & Bani K. Mallick, 2018. "A Powerful Bayesian Test for Equality of Means in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1733-1741, October.
- Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
- T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
- Karl Bruce Gregory & Raymond J. Carroll & Veerabhadran Baladandayuthapani & Soumendra N. Lahiri, 2015. "A Two-Sample Test for Equality of Means in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 837-849, June.
- Zhang, Liang & Zhu, Tianming & Zhang, Jin-Ting, 2020. "A Simple Scale-Invariant Two-Sample Test for High-dimensional Data," Econometrics and Statistics, Elsevier, vol. 14(C), pages 131-144.
- Wang, Rui & Xu, Xingzhong, 2018. "On two-sample mean tests under spiked covariances," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 225-249.
- Jin-Ting Zhang & Jia Guo & Bu Zhou & Ming-Yen Cheng, 2020. "A Simple Two-Sample Test in High Dimensions Based on L2-Norm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 1011-1027, April.
- Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
- Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Zhang, Huaiyu & Wang, Haiyan, 2021. "A more powerful test of equality of high-dimensional two-sample means," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
- Tzviel Frostig & Yoav Benjamini, 2022. "Testing the equality of multivariate means when $$p>n$$ p > n by combining the Hotelling and Simes tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 390-415, June.
- Feng, Long & Sun, Fasheng, 2015. "A note on high-dimensional two-sample test," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 29-36.
- Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
- Ghosh, Santu & Ayyala, Deepak Nag & Hellebuyck, Rafael, 2021. "Two-sample high dimensional mean test based on prepivots," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
- Ayyala, Deepak Nag & Park, Junyong & Roy, Anindya, 2017. "Mean vector testing for high-dimensional dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 136-155.
- Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
- Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
- Zhang, Jie & Pan, Meng, 2016. "A high-dimension two-sample test for the mean using cluster subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 87-97.
- Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
- Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Zhengbang Li & Fuxiang Liu & Luanjie Zeng & Guoxin Zuo, 2021. "A stationary bootstrap test about two mean vectors comparison with somewhat dense differences and fewer sample size than dimension," Computational Statistics, Springer, vol. 36(2), pages 941-960, June.
- Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
- Amanda Plunkett & Junyong Park, 2019. "Two-sample test for sparse high-dimensional multinomial distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 804-826, September.
- Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
More about this item
Keywords
high dimension; mean test; posterior Bayes factor; asymptotic normality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1741-:d:819173. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.