IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v164y2021ics0167947321001523.html
   My bibliography  Save this article

A more powerful test of equality of high-dimensional two-sample means

Author

Listed:
  • Zhang, Huaiyu
  • Wang, Haiyan

Abstract

A new test is proposed for testing the equality of two sample means in high dimensional data in which the sample sizes may be much less than the dimension. The test is constructed based on a studentized average of squared component-wise t-statistics. Asymptotic normality of the test statistic was derived under H0. Theoretical properties of the power function were given under local alternatives. The new test has much better type I error control and power compared to a similarly constructed competing test in recent literature as a result of a more efficient scaling parameter estimate in the test statistic. Monte Carlo experiments show that the new test outperforms several popular competing tests under various data settings, especially when components of the data vector have high correlations. The results are established under the condition that there exists a permutation of the component indices such that the correlation decays suitably fast (at least with polynomial rate). The test is further evaluated with a real-data task of identifying differently expressed Gene Ontology terms with the acute lymphoblastic leukemia gene expression data. The new test provides more consistent results on random samples of the dataset.

Suggested Citation

  • Zhang, Huaiyu & Wang, Haiyan, 2021. "A more powerful test of equality of high-dimensional two-sample means," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:csdana:v:164:y:2021:i:c:s0167947321001523
    DOI: 10.1016/j.csda.2021.107318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321001523
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thulin, Måns, 2014. "A high-dimensional two-sample test for the mean using random subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 26-38.
    2. Gongjun Xu & Lifeng Lin & Peng Wei & Wei Pan, 2016. "An adaptive two-sample test for high-dimensional means," Biometrika, Biometrika Trust, vol. 103(3), pages 609-624.
    3. Roger S. Zoh & Abhra Sarkar & Raymond J. Carroll & Bani K. Mallick, 2018. "A Powerful Bayesian Test for Equality of Means in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1733-1741, October.
    4. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    5. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    6. Karl Bruce Gregory & Raymond J. Carroll & Veerabhadran Baladandayuthapani & Soumendra N. Lahiri, 2015. "A Two-Sample Test for Equality of Means in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 837-849, June.
    7. Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
    8. Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Xingzhong Xu, 2022. "A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    2. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Ghosh, Santu & Ayyala, Deepak Nag & Hellebuyck, Rafael, 2021. "Two-sample high dimensional mean test based on prepivots," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    4. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Tzviel Frostig & Yoav Benjamini, 2022. "Testing the equality of multivariate means when $$p>n$$ p > n by combining the Hotelling and Simes tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 390-415, June.
    6. Feng, Long & Sun, Fasheng, 2015. "A note on high-dimensional two-sample test," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 29-36.
    7. Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    9. Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
    10. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    11. Zhang, Jie & Pan, Meng, 2016. "A high-dimension two-sample test for the mean using cluster subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 87-97.
    12. Zhengbang Li & Fuxiang Liu & Luanjie Zeng & Guoxin Zuo, 2021. "A stationary bootstrap test about two mean vectors comparison with somewhat dense differences and fewer sample size than dimension," Computational Statistics, Springer, vol. 36(2), pages 941-960, June.
    13. Hyodo, Masashi & Watanabe, Hiroki & Seo, Takashi, 2018. "On simultaneous confidence interval estimation for the difference of paired mean vectors in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 160-173.
    14. Ayyala, Deepak Nag & Park, Junyong & Roy, Anindya, 2017. "Mean vector testing for high-dimensional dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 136-155.
    15. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    16. Wang, Wei & Lin, Nan & Tang, Xiang, 2019. "Robust two-sample test of high-dimensional mean vectors under dependence," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 312-329.
    17. Ouyang, Yanyan & Liu, Jiamin & Tong, Tiejun & Xu, Wangli, 2022. "A rank-based high-dimensional test for equality of mean vectors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    18. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    19. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    20. Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:164:y:2021:i:c:s0167947321001523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.