IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i530p985-996.html
   My bibliography  Save this article

Expected Conditional Characteristic Function-based Measures for Testing Independence

Author

Listed:
  • Chenlu Ke
  • Xiangrong Yin

Abstract

We propose a novel class of independence measures for testing independence between two random vectors based on the discrepancy between the conditional and the marginal characteristic functions. The relation between our index and other similar measures is studied, which indicates that they all belong to a large framework of reproducing kernel Hilbert space. If one of the variables is categorical, our asymmetric index extends the typical ANOVA to a kernel ANOVA that can test a more general hypothesis of equal distributions among groups. In addition, our index is also applicable when both variables are continuous. We develop two empirical estimates and obtain their respective asymptotic distributions. We illustrate the advantages of our approach by numerical studies across a variety of settings including a real data example. Supplementary materials for this article are available online.

Suggested Citation

  • Chenlu Ke & Xiangrong Yin, 2020. "Expected Conditional Characteristic Function-based Measures for Testing Independence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 985-996, April.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:985-996
    DOI: 10.1080/01621459.2019.1604364
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1604364
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1604364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:985-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.