IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103i484y2008p1631-1640.html
   My bibliography  Save this article

A Multiple-Index Model and Dimension Reduction

Author

Listed:
  • Xia, Yingcun

Abstract

No abstract is available for this item.

Suggested Citation

  • Xia, Yingcun, 2008. "A Multiple-Index Model and Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1631-1640.
  • Handle: RePEc:bes:jnlasa:v:103:i:484:y:2008:p:1631-1640
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/016214508000000805
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Qing & Zhu, Liping, 2017. "On relative efficiency of principal Hessian directions," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 108-113.
    2. Akritas, Michael G., 2016. "Projection pursuit multi-index (PPMI) models," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 99-103.
    3. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    4. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    5. Yixiao Jiang, 2021. "Semiparametric Estimation of a Corporate Bond Rating Model," Econometrics, MDPI, vol. 9(2), pages 1-20, May.
    6. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    7. Lewbel, Arthur & Lin, Xirong, 2022. "Identification of semiparametric model coefficients, with an application to collective households," Journal of Econometrics, Elsevier, vol. 226(2), pages 205-223.
    8. Zambom, Adriano Zanin & Akritas, Michael G., 2015. "Nonparametric significance testing and group variable selection," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 51-60.
    9. Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation and Inference for a Class of Generalized Hierarchical Models," Papers 2311.02789, arXiv.org, revised Apr 2024.
    10. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2017. "Joint sufficient dimension reduction and estimation of conditional and average treatment effects," Biometrika, Biometrika Trust, vol. 104(3), pages 583-596.
    11. Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
    12. Song Song, 2011. "Dynamic Large Spatial Covariance Matrix Estimation in Application to Semiparametric Model Construction via Variable Clustering: the SCE approach," Papers 1106.3921, arXiv.org, revised Jun 2011.
    13. Peter Radchenko & Xinghao Qiao & Gareth M. James, 2015. "Index Models for Sparsely Sampled Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 824-836, June.
    14. Liu, Xuejing & Yu, Zhou & Wen, Xuerong Meggie & Paige, Robert, 2015. "On testing common indices for two multi-index models: A link-free approach," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 75-85.
    15. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    16. Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation of Semiparametric Multi-Index Models Using Deep Neural Networks," Monash Econometrics and Business Statistics Working Papers 21/23, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:i:484:y:2008:p:1631-1640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.