IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v63y2011i6p1183-1206.html
   My bibliography  Save this article

Maximum likelihood estimation in a partially observed stratified regression model with censored data

Author

Listed:
  • Amélie Detais
  • Jean-François Dupuy

Abstract

No abstract is available for this item.

Suggested Citation

  • Amélie Detais & Jean-François Dupuy, 2011. "Maximum likelihood estimation in a partially observed stratified regression model with censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1183-1206, December.
  • Handle: RePEc:spr:aistmt:v:63:y:2011:i:6:p:1183-1206
    DOI: 10.1007/s10463-010-0273-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-010-0273-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-010-0273-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    2. Korsholm, L., 1998. "Likelihood Ratio Test in the Correlated Gamma-Frailty Model," Papers 98-11, Centre for Labour Market and Social Research, Danmark-.
    3. Hong‐Bin Fang & Gang Li & Jianguo Sun, 2005. "Maximum Likelihood Estimation in a Semiparametric Logistic/Proportional‐Hazards Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 59-75, March.
    4. Zeng, Donglin & Lin, D.Y. & Yin, Guosheng, 2005. "Maximum Likelihood Estimation for the Proportional Odds Model With Random Effects," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 470-483, June.
    5. Tomoyuki Sugimoto & Toshimitsu Hamasaki, 2006. "Properties of estimators of baseline hazard functions in a semiparametric cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 647-674, December.
    6. Torben Martinussen, 1999. "Cox Regression with Incomplete Covariate Measurements using the EM‐algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(4), pages 479-491, December.
    7. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim-Hung Pho & Thi Diem-Chinh Ho & Tuan-Kiet Tran & Wing-Keung Wong, 2019. "Moment Generating Function, Expectation And Variance Of Ubiquitous Distributions With Applications In Decision Sciences: A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 65-150, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Shoubhik & Subramanian, Sundarraman, 2014. "Model assisted Cox regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 281-303.
    2. Angelica Hernandez-Quintero & Jean-François Dupuy & Gabriel Escarela, 2011. "Analysis of a semiparametric mixture model for competing risks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 305-329, April.
    3. Kim, Yongdai & Kim, Bumsoo & Jang, Woncheol, 2010. "Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1339-1351, July.
    4. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    5. Patilea, Valentin & Van Keilegom, Ingrid, 2017. "A general approach for cure models in survival analysis," LIDAM Discussion Papers ISBA 2017008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    7. Frederico Machado Almeida & Enrico Antônio Colosimo & Vinícius Diniz Mayrink, 2021. "Firth adjusted score function for monotone likelihood in the mixture cure fraction model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 131-155, January.
    8. Motahareh Parsa & Ingrid Van Keilegom, 2023. "Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?," Statistical Papers, Springer, vol. 64(3), pages 835-855, June.
    9. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    10. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    11. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    12. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    13. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    14. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    15. Frank Eriksson & Torben Martinussen & Søren Feodor Nielsen, 2020. "Large sample results for frequentist multiple imputation for Cox regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 969-996, August.
    16. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    17. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    18. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    19. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    20. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:63:y:2011:i:6:p:1183-1206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.