IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i10p2337-2351.html
   My bibliography  Save this article

Analysis of multivariate skew normal models with incomplete data

Author

Listed:
  • Lin, Tsung I.
  • Ho, Hsiu J.
  • Chen, Chiang L.

Abstract

We establish computationally flexible methods and algorithms for the analysis of multivariate skew normal models when missing values occur in the data. To facilitate the computation and simplify the theoretic derivation, two auxiliary permutation matrices are incorporated into the model for the determination of observed and missing components of each observation. Under missing at random mechanisms, we formulate an analytically simple ECM algorithm for calculating parameter estimation and retrieving each missing value with a single-valued imputation. Gibbs sampling is used to perform a Bayesian inference on model parameters and to create multiple imputations for missing values. The proposed methodologies are illustrated through a real data set and comparisons are made with those obtained from fitting the normal counterparts.

Suggested Citation

  • Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:10:p:2337-2351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00134-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    2. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    3. R.B. Arellano-Valle & H. Bolfarine & V.H. Lachos, 2007. "Bayesian Inference for Skew-normal Linear Mixed Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(6), pages 663-682.
    4. Liu, Chuanhai, 1999. "Efficient ML Estimation of the Multivariate Normal Distribution from Incomplete Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 206-217, May.
    5. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.
    6. Adelchi Azzalini & Marc G. Genton, 2008. "Robust Likelihood Methods Based on the Skew‐t and Related Distributions," International Statistical Review, International Statistical Institute, vol. 76(1), pages 106-129, April.
    7. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    10. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hea-Jung Kim, 2015. "A best linear threshold classification with scale mixture of skew normal populations," Computational Statistics, Springer, vol. 30(1), pages 1-28, March.
    2. Wei, Yuhong & Tang, Yang & McNicholas, Paul D., 2019. "Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 18-41.
    3. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
    5. Reyhaneh Rikhtehgaran & Iraj Kazemi, 2016. "The determination of uncertainty levels in robust clustering of subjects with longitudinal observations using the Dirichlet process mixture," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 541-562, December.
    6. Timothy Opheim & Anuradha Roy, 2021. "Linear models for multivariate repeated measures data with block exchangeable covariance structure," Computational Statistics, Springer, vol. 36(3), pages 1931-1963, September.
    7. Tsung-I Lin & I-An Chen & Wan-Lun Wang, 2023. "A robust factor analysis model based on the canonical fundamental skew-t distribution," Statistical Papers, Springer, vol. 64(2), pages 367-393, April.
    8. Liseo, Brunero & Parisi, Antonio, 2013. "Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 125-138.
    9. Ivan Žežula & Daniel Klein & Anuradha Roy, 2018. "Testing of multivariate repeated measures data with block exchangeable covariance structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 360-378, June.
    10. Sayantee Jana & Narayanaswamy Balakrishnan & Jemila S. Hamid, 2020. "Inference in the Growth Curve Model under Multivariate Skew Normal Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 34-69, May.
    11. Shi, Jianwei & Qin, Guoyou & Zhu, Huichen & Zhu, Zhongyi, 2021. "Communication-efficient distributed M-estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    12. Gustavo Rocha & Reinaldo Arellano-Valle & Rosangela Loschi, 2015. "Maximum likelihood methods in a robust censored errors-in-variables model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 857-877, December.
    13. Chen, Fei & Shi, Lei & Zhu, Xuehu & Zhu, Lixing, 2018. "Generalized principal Hessian directions for mixture multivariate skew elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 142-159.
    14. Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 231-253, August.
    15. Ahfock, Daniel & Pyne, Saumyadipta & Lee, Sharon X. & McLachlan, Geoffrey J., 2016. "Partial identification in the statistical matching problem," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 79-90.
    16. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    17. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    18. Francisco H. C. Alencar & Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 521-557, September.
    19. Jana, Sayantee & Balakrishnan, Narayanaswamy & Hamid, Jemila S., 2018. "Estimation of the parameters of the extended growth curve model under multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 111-128.
    20. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    3. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    4. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    5. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    6. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    7. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    8. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    9. Arellano-Valle, Reinaldo B. & Genton, Marc G. & Loschi, Rosangela H., 2009. "Shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 91-101, January.
    10. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    11. Huang Yangxin & Chen Jiaqing & Yan Chunning, 2012. "Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-30, November.
    12. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    13. Yangxin Huang & Tao Lu, 2017. "Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features," Computational Statistics, Springer, vol. 32(1), pages 179-196, March.
    14. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    15. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    16. De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
    17. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    18. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.
    19. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    20. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:10:p:2337-2351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.