IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v166y2018icp111-128.html
   My bibliography  Save this article

Estimation of the parameters of the extended growth curve model under multivariate skew normal distribution

Author

Listed:
  • Jana, Sayantee
  • Balakrishnan, Narayanaswamy
  • Hamid, Jemila S.

Abstract

The Growth Curve Model (GCM) assumes the same shape of profiles for each group, where group means are assumed to be represented by polynomials of the same degree. The model, therefore, is inappropriate when analyzing data from studies involving groups with mean growth curves represented by different shapes. We consider the Extended Growth Curve Model (EGCM), which is a model that allows the group means to follow different degrees of polynomials over time. Existing inference on EGCM assumes multivariate normal errors and produces estimators that are not optimal, when used in the analysis of data with skewed distributions. In this paper, we consider the multivariate skew normal (MSN) distribution as the underlying distribution for the EGCM and provide estimators for its mean and covariance parameters. We adopted the Restricted Expectation–Maximization (REM) algorithm, which is based on the multivariate Newton–Raphson (NR) method and Lagrangian optimization. However, the multivariate NR method and the existing REM algorithm are only applicable to vector parameters and the parameters of interest in this study are matrices. We, therefore, extended the NR approach to matrix parameters, that consequently allowed us to extend the REM algorithm to matrix estimators. The performance of the proposed estimators was examined using extensive simulations and a real data example was also considered to illustrate the application of our proposed estimators.

Suggested Citation

  • Jana, Sayantee & Balakrishnan, Narayanaswamy & Hamid, Jemila S., 2018. "Estimation of the parameters of the extended growth curve model under multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 111-128.
  • Handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:111-128
    DOI: 10.1016/j.jmva.2018.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17303998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sayantee Jana & Narayanaswamy Balakrishnan & Dietrich Rosen & Jemila Seid Hamid, 2017. "High dimensional extension of the growth curve model and its application in genetics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 273-292, June.
    2. Balakrishnan, N. & Scarpa, Bruno, 2012. "Multivariate measures of skewness for the skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 73-87, February.
    3. von Rosen, Dietrich, 1989. "Maximum likelihood estimators in multivariate linear normal models," Journal of Multivariate Analysis, Elsevier, vol. 31(2), pages 187-200, November.
    4. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    5. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    6. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    7. Hamid, Jemila S. & Beyene, Joseph & von Rosen, Dietrich, 2011. "A novel trace test for the mean parameters in a multivariate growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 238-251, February.
    8. Jemila Seid Hamid & Dietrich Von Rosen, 2006. "Residuals in the Extended Growth Curve Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 121-138, March.
    9. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yating & Fei, Yu & Ni, Mingming & Nummi, Tapio & Pan, Jianxin, 2022. "Growth curve mixture models with unknown covariance structures," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayantee Jana & Narayanaswamy Balakrishnan & Jemila S. Hamid, 2020. "Inference in the Growth Curve Model under Multivariate Skew Normal Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 34-69, May.
    2. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    3. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    4. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    6. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    7. Arellano-Valle, R.B. & Ozan, S. & Bolfarine, H. & Lachos, V.H., 2005. "Skew normal measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 265-281, October.
    8. Francisco H. C. Alencar & Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 521-557, September.
    9. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    10. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    11. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    12. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    13. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    14. Lourdes Montenegro & Víctor Lachos & Heleno Bolfarine, 2010. "Inference for a skew extension of the Grubbs model," Statistical Papers, Springer, vol. 51(3), pages 701-715, September.
    15. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    16. Arellano-Valle, Reinaldo B. & Genton, Marc G. & Loschi, Rosangela H., 2009. "Shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 91-101, January.
    17. Arjun Gupta & John Chen, 2004. "A class of multivariate skew-normal models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 305-315, June.
    18. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    19. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    20. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:111-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.