IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v69y1999i2p206-217.html
   My bibliography  Save this article

Efficient ML Estimation of the Multivariate Normal Distribution from Incomplete Data

Author

Listed:
  • Liu, Chuanhai

Abstract

It is well known that the maximum likelihood estimates (MLEs) of a multivariate normal distribution from incomplete data with a monotone pattern have closed-form expressions and that the MLEs from incomplete data with a general missing-data pattern can be obtained using the Expectation-Maximization (EM) algorithm. This article gives closed-form expressions, analogous to the extension of the Bartlett decomposition, for both the MLEs of the parameters and the associated Fisher information matrix from incomplete data with a monotone missing-data pattern. For MLEs of the parameters from incomplete data with a general missing-data pattern, we implement EM and Expectation-Constrained-Maximization-Either (ECME), by augmenting the observed data into a complete monotone sample. We also provide a numerical example, which shows that the monotone EM (MEM) and monotone ECME (MECME) algorithms converge much faster than the EM algorithm.

Suggested Citation

  • Liu, Chuanhai, 1999. "Efficient ML Estimation of the Multivariate Normal Distribution from Incomplete Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 206-217, May.
  • Handle: RePEc:eee:jmvana:v:69:y:1999:i:2:p:206-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91793-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, C. H., 1993. "Bartlett's Decomposition of the Posterior Distribution of the Covariance for Normal Monotone Ignorable Missing Data," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 198-206, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
    2. Xiaoqian Sun & Dongchu Sun, 2007. "Estimation of a Multivariate Normal Covariance Matrix with Staircase Pattern Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 211-233, June.
    3. Sun, Dongchu & Sun, Xiaoqian, 2006. "Estimation of multivariate normal covariance and precision matrices in a star-shape model with missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 698-719, March.
    4. Ding, Peng, 2014. "Bayesian robust inference of sample selection using selection-t models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 451-464.
    5. Tang, Man-Lai & Wang Ng, Kai & Tian, Guo-Liang & Tan, Ming, 2007. "On improved EM algorithm and confidence interval construction for incomplete rxc tables," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2919-2933, March.
    6. Ng, Kai Wang & Tang, Man-Lai & Tan, Ming & Tian, Guo-Liang, 2008. "Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 490-509, March.
    7. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    8. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering via mixtures of t factor analyzers with incomplete data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 659-690, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    2. Tang, Yongqiang, 2015. "An efficient monotone data augmentation algorithm for Bayesian analysis of incomplete longitudinal data," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 146-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:69:y:1999:i:2:p:206-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.