IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v161y2021ics0167947321000852.html
   My bibliography  Save this article

Communication-efficient distributed M-estimation with missing data

Author

Listed:
  • Shi, Jianwei
  • Qin, Guoyou
  • Zhu, Huichen
  • Zhu, Zhongyi

Abstract

In the big data era, practical applications often encounter incomplete data. Current distributed methods, ignoring missingness, may cause inconsistent estimates. Motivated by that, a distributed algorithm is developed for M-estimation with missing data. The proposed algorithm is communication-efficient, where only gradient information is transferred to the central machine. The parameters of interest and the nuisance parameters are simultaneously updated. Theoretically, it is shown that the proposed algorithm achieves a full sample performance after a moderate number of iterations. The influence of nuisance parameters on distributed M-estimation is also investigated. Simulations via synthetic data illustrate the effectiveness of the algorithm. At last, the algorithm is applied to a real data set.

Suggested Citation

  • Shi, Jianwei & Qin, Guoyou & Zhu, Huichen & Zhu, Zhongyi, 2021. "Communication-efficient distributed M-estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000852
    DOI: 10.1016/j.csda.2021.107251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000852
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    2. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    3. Shi, Chengchun & Lu, Wenbin & Song, Rui, 2018. "A massive data framework for M-estimators with cubic-rate," LSE Research Online Documents on Economics 102111, London School of Economics and Political Science, LSE Library.
    4. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.
    5. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    6. Chengchun Shi & Wenbin Lu & Rui Song, 2018. "A Massive Data Framework for M-Estimators with Cubic-Rate," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1698-1709, October.
    7. Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
    8. Xinwei Ma & Jingshen Wang, 2018. "Robust Inference Using Inverse Probability Weighting," Papers 1810.11397, arXiv.org, revised May 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    3. Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
    4. Fengrui Di & Lei Wang, 2022. "Multi-round smoothed composite quantile regression for distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 869-893, October.
    5. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    6. Zhao, Yan-Yong & Zhang, Yuchun & Liu, Yuan & Ismail, Noriszura, 2024. "Distributed debiased estimation of high-dimensional partially linear models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    7. Le-Yu Chen & Sokbae Lee, 2018. "High Dimensional Classification through $\ell_0$-Penalized Empirical Risk Minimization," Papers 1811.09540, arXiv.org.
    8. Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
    9. Tom Boot & Art=uras Juodis, 2023. "Uniform Inference in Linear Error-in-Variables Models: Divide-and-Conquer," Papers 2301.04439, arXiv.org.
    10. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    11. Ma, Xuejun & Wang, Shaochen & Zhou, Wang, 2021. "Testing multivariate quantile by empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    12. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    13. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    14. Turner, Alex J. & Fichera, Eleonora & Sutton, Matt, 2021. "The effects of in-utero exposure to influenza on mental health and mortality risk throughout the life-course," Economics & Human Biology, Elsevier, vol. 43(C).
    15. Chen, Sixia & Haziza, David, 2023. "A unified framework of multiply robust estimation approaches for handling incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    16. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    17. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    18. Michele Cantarella & Chiara Strozzi, 2021. "Workers in the crowd: the labor market impact of the online platform economy [An evaluation of instrumental variable strategies for estimating the effects of catholic schooling]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(6), pages 1429-1458.
    19. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    20. N'dri, Lasme Mathieu & Kakinaka, Makoto, 2020. "Financial inclusion, mobile money, and individual welfare: The case of Burkina Faso," Telecommunications Policy, Elsevier, vol. 44(3).
    21. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.