IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i2d10.1007_s00362-022-01318-8.html
   My bibliography  Save this article

A robust factor analysis model based on the canonical fundamental skew-t distribution

Author

Listed:
  • Tsung-I Lin

    (National Chung Hsing University
    China Medical University)

  • I-An Chen

    (National Chung Hsing University)

  • Wan-Lun Wang

    (National Cheng Kung University)

Abstract

The traditional factor analysis rested on the assumption of multivariate normality has been extended by considering the restricted multivariate skew-t (rMST) distribution for the unobserved factors and errors jointly. However, the rMST distribution has limited use for characterising skewness that concentrates in a single direction. This paper is devoted to introducing a more flexible robust factor analysis model based on the broader canonical fundamental skew-t (CFUST) distribution, called the CFUSTFA model. The proposed new model can account for more complex features of skewness toward multiple directions. An efficient alternating expectation conditional maximization algorithm fabricated under several reduced complete-data spaces is developed to estimate parameters under the maximum likelihood (ML) perspective. To assess the variability of parameter estimates, we present an information-based approach to approximating the asymptotic covariance matrix of the ML estimators. The effectiveness and applicability of the proposed techniques are demonstrated through the analysis of simulated and real datasets.

Suggested Citation

  • Tsung-I Lin & I-An Chen & Wan-Lun Wang, 2023. "A robust factor analysis model based on the canonical fundamental skew-t distribution," Statistical Papers, Springer, vol. 64(2), pages 367-393, April.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01318-8
    DOI: 10.1007/s00362-022-01318-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01318-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01318-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    2. Sharon X. Lee & Tsung-I Lin & Geoffrey J. McLachlan, 2021. "Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 481-512, June.
    3. Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
    4. Wan-Lun Wang & Tsung-I Lin, 2013. "An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers," Computational Statistics, Springer, vol. 28(2), pages 751-769, April.
    5. M. Liu & T.I. Lin, 2015. "Skew-normal factor analysis models with incomplete data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 789-805, April.
    6. James Dunn, 1973. "A note on a sufficiency condition for uniqueness of a restricted factor matrix," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 141-143, March.
    7. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    8. McLachlan, G.J. & Bean, R.W. & Ben-Tovim Jones, L., 2007. "Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5327-5338, July.
    9. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    10. Ab Mooijaart, 1985. "Factor analysis for non-normal variables," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 323-342, September.
    11. Lee, Sharon X. & McLachlan, Geoffrey J., 2021. "On formulations of skew factor models: Skew factors and/or skew errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    12. Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
    13. Farzane Hashemi & Mehrdad Naderi & Ahad Jamalizadeh & Tsung-I Lin, 2020. "A skew factor analysis model based on the normal mean–variance mixture of Birnbaum–Saunders distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(16), pages 3007-3029, December.
    14. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    15. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    16. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    17. Wan-Lun Wang & Luis M. Castro & Yen-Ting Chang & Tsung-I Lin, 2019. "Mixtures of restricted skew-t factor analyzers with common factor loadings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 445-480, June.
    18. Wan-Lun Wang & Ahad Jamalizadeh & Tsung-I Lin, 2020. "Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions," Statistical Papers, Springer, vol. 61(6), pages 2643-2670, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, Farzane & Naderi, Mehrdad & Jamalizadeh, Ahad & Bekker, Andriette, 2021. "A flexible factor analysis based on the class of mean-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
    3. Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
    4. Sharon X. Lee & Tsung-I Lin & Geoffrey J. McLachlan, 2021. "Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 481-512, June.
    5. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    6. Wang, Wan-Lun & Castro, Luis M. & Lin, Tsung-I, 2017. "Automated learning of t factor analysis models with complete and incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 157-171.
    7. Kim, Hea-Jung, 2018. "Bayesian hierarchical robust factor analysis models for partially observed sample-selection data," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 65-82.
    8. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering via mixtures of t factor analyzers with incomplete data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 659-690, September.
    10. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    11. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    12. Francisco H. C. Alencar & Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 521-557, September.
    13. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    14. Lin, Tsung-I & McNicholas, Paul D. & Ho, Hsiu J., 2014. "Capturing patterns via parsimonious t mixture models," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 80-87.
    15. King, Mervyn & Sentana, Enrique & Wadhwani, Sushil, 1994. "Volatility and Links between National Stock Markets," Econometrica, Econometric Society, vol. 62(4), pages 901-933, July.
    16. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.
    17. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    18. Carel Peeters, 2012. "Rotational Uniqueness Conditions Under Oblique Factor Correlation Metric," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 288-292, April.
    19. Valeriano, Katherine A.L. & Galarza, Christian E. & Matos, Larissa A. & Lachos, Victor H., 2023. "Likelihood-based inference for the multivariate skew-t regression with censored or missing responses," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    20. Wan-Lun Wang & Tsung-I Lin, 2020. "Automated learning of mixtures of factor analysis models with missing information," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1098-1124, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01318-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.