IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v129y2024ics0306919224001775.html
   My bibliography  Save this article

Too much, too soon? Early-maturing maize varieties as drought escape strategy in Malawi

Author

Listed:
  • Grewer, Uwe
  • Kim, Dong-Hyuk
  • Waha, Katharina

Abstract

Adopting early-maturing maize varieties can substantially increase yield and yield stability in suitable environments. Actionable recommendations that specify where early-maturing varieties can be suitably applied are lacking across low-income countries. We found for maize in Malawi that varieties with longer maturity duration provide on average the highest yield. However, if water stress occurs, we found that its timing determines which seed variety performs best. If water stress conditions are confined to the late season, early-maturing varieties escape drought and perform better than medium- and late-maturing varieties. Instead, if water stress conditions start already from mid-season, early-maturing varieties perform worst. Our results demonstrate that the typical seasonal timing of water stress can serve as a suitable criterion for recommending where to adopt early-maturing varieties. Finally, we propose an integrated research framework that complements our econometric analysis and allows to derive actionable variety suitability recommendations at the country level.

Suggested Citation

  • Grewer, Uwe & Kim, Dong-Hyuk & Waha, Katharina, 2024. "Too much, too soon? Early-maturing maize varieties as drought escape strategy in Malawi," Food Policy, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:jfpoli:v:129:y:2024:i:c:s0306919224001775
    DOI: 10.1016/j.foodpol.2024.102766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306919224001775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2024.102766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milu Muyanga & T S Jayne, 2019. "Revisiting the Farm Size-Productivity Relationship Based on a Relatively Wide Range of Farm Sizes: Evidence from Kenya," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1140-1163.
    2. Carletto, Calogero & Savastano, Sara & Zezza, Alberto, 2013. "Fact or artifact: The impact of measurement errors on the farm size–productivity relationship," Journal of Development Economics, Elsevier, vol. 103(C), pages 254-261.
    3. Arthi, Vellore & Beegle, Kathleen & De Weerdt, Joachim & Palacios-López, Amparo, 2018. "Not your average job: Measuring farm labor in Tanzania," Journal of Development Economics, Elsevier, vol. 130(C), pages 160-172.
    4. Arslan, Aslihan & Belotti, Federico & Lipper, Leslie, 2017. "Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania," Food Policy, Elsevier, vol. 69(C), pages 68-81.
    5. A. de Janvry & E. Sadoulet, 2002. "World Poverty and the Role of Agricultural Technology: Direct and Indirect Effects," Journal of Development Studies, Taylor & Francis Journals, vol. 38(4), pages 1-26.
    6. Tesfaye, Kindie & Sonder, Kai & Cairns, Jill & Magorokosho, Cosmos & Tarekegn, Amsal & Kassie, Girma T. & Getaneh, Fite & Abdoulaye, Tahirou & Abate, Tsedeke & Erenstein, Olaf, 2016. "Targeting Drought-Tolerant Maize Varieties in Southern Africa: A Geospatial Crop Modeling Approach Using Big Data," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(A), pages 1-18.
    7. Samson P. Katengeza & Stein T. Holden, 2021. "Productivity impact of drought tolerant maize varieties under rainfall stress in Malawi: A continuous treatment approach," Agricultural Economics, International Association of Agricultural Economists, vol. 52(1), pages 157-171, January.
    8. Deininger, Klaus & Olinto, Pedro, 2000. "Why liberalization alone has not improved agricultural productivity in Zambia : the role of asset ownership and working capital constraints," Policy Research Working Paper Series 2302, The World Bank.
    9. Simtowe, Franklin & Amondo, Emily & Marenya, Paswel & Rahut, Dil & Sonder, Kai & Erenstein, Olaf, 2019. "Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda," Land Use Policy, Elsevier, vol. 88(C).
    10. Manzoor H. Dar & Alain de Janvry & Kyle Emerick & Elisabeth Sadoulet & Eleanor Wiseman, 2024. "Private Input Suppliers as Information Agents for Technology Adoption in Agriculture," American Economic Journal: Applied Economics, American Economic Association, vol. 16(2), pages 219-248, April.
    11. Samson P. Katengeza & Stein T. Holden & Rodney W. Lunduka, 2019. "Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(1), pages 198-214, February.
    12. Girma Gezimu Gebre & Yuichiro Amekawa & Asmiro Abeje Fikadu & Dil Bahadur Rahut, 2023. "Do climate change adaptation strategies improve farmers’ food security in Tanzania?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 629-647, June.
    13. Manda, J. & Gardebroek, C. & Kuntashula, E. & Alene, A.D., 2018. "Impact of Improved Maize Varieties on Food Security in Eastern Zambia: a doubly robust analysis," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277004, International Association of Agricultural Economists.
    14. Janvry, Alain De & Sadoulet, Elisabeth, 2010. "Agriculture for development in sub-Saharan Africa: An update," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 5(01), pages 1-11, September.
    15. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    16. Julius Manda & Cornelis Gardebroek & Elias Kuntashula & Arega D. Alene, 2018. "Impact of improved maize varieties on food security in Eastern Zambia: A doubly robust analysis," Review of Development Economics, Wiley Blackwell, vol. 22(4), pages 1709-1728, November.
    17. Laura A Paul, 2021. "Heterogeneous and conditional returns from DT maize for farmers in Southern Africa [Long term consequences of early childhood malnutrition]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(5), pages 1224-1248.
    18. Ekbom, Anders & Sterner, Thomas, 2008. "Production Function Analysis of Soil Properties and Soil Conservation Investments in Tropical Agriculture," RFF Working Paper Series dp-08-20-efd, Resources for the Future.
    19. Ashok Mishra & Kamel Louhichi & Giampiero Genovese & Sergio Gomez y Paloma, 2023. "Insights into land size and productivity in Ethiopia: What do data and heterogenous analysis reveal? [Aperçu de la relation taille des exploitations et productivité en Éthiopie : que révèlent les d," Post-Print hal-03965902, HAL.
    20. Lunduka, Rodney & Fisher, Monica & Snapp, Sieglinde, 2012. "Could farmer interest in a diversity of seed attributes explain adoption plateaus for modern maize varieties in Malawi?," Food Policy, Elsevier, vol. 37(5), pages 504-510.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clifton Makate & Marshall Makate, 2022. "Do Rainfall Shocks Prompt Commercial Input Purchases Amongst Smallholder Farmers in Diverse Regions and Environments in Malawi?," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    2. Manda, Julius & Alene, Arega D. & Tufa, Adane H. & Abdoulaye, Tahirou & Wossen, Tesfamicheal & Chikoye, David & Manyong, Victor, 2019. "The poverty impacts of improved cowpea varieties in Nigeria: A counterfactual analysis," World Development, Elsevier, vol. 122(C), pages 261-271.
    3. Hailemariam Ayalew & Jordan Chamberlin & Carol Newman & Kibrom A. Abay & Frederic Kosmowski & Tesfaye Sida, 2024. "Revisiting the size–productivity relationship with imperfect measures of production and plot size," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 595-619, March.
    4. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Learning from neighboring farmers: Does spatial dependence affect adoption of drought‐tolerant wheat varieties in China?," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(4), pages 519-537, December.
    5. William J. Burke & Stephen N. Morgan & Thelma Namonje & Milu Muyanga & Nicole M. Mason, 2023. "Beyond the “inverse relationship”: Area mismeasurement may affect actual productivity, not just how we understand it," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 557-569, July.
    6. Fang Xia & Lingling Hou & Songqing Jin & Dongqing Li, 2020. "Land size and productivity in the livestock sector: evidence from pastoral areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 867-888, July.
    7. Mensah, Edouard R. & Kostandini, Genti, 2020. "The inverse farm size-productivity relationship under land size mis-measurement and in the presence of weather and price risks: Panel data evidence from Uganda," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304477, Agricultural and Applied Economics Association.
    8. Chaoran Chen & Diego Restuccia & Raül Santaeulàlia-Llopis, 2023. "Land Misallocation and Productivity," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(2), pages 441-465, April.
    9. Helfand, Steven M. & Taylor, Matthew P.H., 2021. "The inverse relationship between farm size and productivity: Refocusing the debate," Food Policy, Elsevier, vol. 99(C).
    10. Abay, Kibrom A. & Abate, Gashaw T. & Barrett, Christopher B. & Bernard, Tanguy, 2019. "Correlated non-classical measurement errors, ‘Second best’ policy inference, and the inverse size-productivity relationship in agriculture," Journal of Development Economics, Elsevier, vol. 139(C), pages 171-184.
    11. Wollburg, Philip & Tiberti, Marco & Zezza, Alberto, 2021. "Recall length and measurement error in agricultural surveys," Food Policy, Elsevier, vol. 100(C).
    12. Keijiro Otsuka, 2021. "Changing Relationship between Farm Size and Productivity and Its Implications for Philippine Agriculture," Discussion Papers 2102, Graduate School of Economics, Kobe University.
    13. Abay,Kibrom A. & Barrett,Christopher B. & Kilic,Talip & Moylan,Heather G. & Ilukor,John & Vundru,Wilbert Drazi, 2022. "Nonclassical Measurement Error and Farmers’ Response to Information Reveal Behavioral Anomalies," Policy Research Working Paper Series 9908, The World Bank.
    14. Omotilewa, Oluwatoba J. & Jayne, T.S. & Muyanga, Milu & Aromolaran, Adebayo B. & Liverpool-Tasie, Lenis Saweda O. & Awokuse, Titus, 2021. "A revisit of farm size and productivity: Empirical evidence from a wide range of farm sizes in Nigeria," World Development, Elsevier, vol. 146(C).
    15. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 367-390, April.
    16. Abay, Kibrom A. & Barrett, Christopher B. & Kilic, Talip & Moylan, Heather & Ilukor, John & Vundru, Wilbert Drazi, 2023. "Nonclassical measurement error and farmers’ response to information treatment," Journal of Development Economics, Elsevier, vol. 164(C).
    17. Kibrom A. Abay, 2020. "Measurement errors in agricultural data and their implications on marginal returns to modern agricultural inputs," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 323-341, May.
    18. Sydney Gourlay & Talip Kilic, 2023. "Is dirt cheap? The economic costs of failing to meet soil health requirements on smallholder farms," Agricultural Economics, International Association of Agricultural Economists, vol. 54(6), pages 793-818, November.
    19. Burke, William J. & Jayne, Thom S. & Snapp, Sieglinde S., 2022. "Nitrogen efficiency by soil quality and management regimes on Malawi farms: Can fertilizer use remain profitable?," World Development, Elsevier, vol. 152(C).
    20. Xingguang Li & Xuexi Huo, 2022. "Agricultural labor markets and the inverse plot size–productivity relationship: Evidence from China's apple growers," Review of Development Economics, Wiley Blackwell, vol. 26(4), pages 2163-2183, November.

    More about this item

    Keywords

    Seed policy; Drought; Smallholder agriculture; Technology adoption; Variety recommendations; Household survey data;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:129:y:2024:i:c:s0306919224001775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.