IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v125y2024ics0095069624000159.html
   My bibliography  Save this article

Panel data in environmental economics: Econometric issues and applications to IPAT models

Author

Listed:
  • Eibinger, Tobias
  • Deixelberger, Beate
  • Manner, Hans

Abstract

This paper addresses econometric challenges arising in panel data analyses related to IPAT (environmental Impact of Population, Affluence and Technology) models and other applications typically characterized by a large-N and large-T structure. This poses specific econometric complexities due to nonstationarity and cross-sectional error correlation, potentially affecting consistent estimation and valid inference. We provide a concise overview of these complications and how to deal with these with appropriate tests and models. Moreover, we apply these insights to empirical examples based on the IPAT identity, offering insights into the robustness of previous findings. Our results suggest that using standard panel techniques can lead to biased estimates, incorrect inference, and invalid model adequacy tests. This can potentially lead to flawed policy conclusions. We provide practical guidance to practitioners for navigating these econometric issues.

Suggested Citation

  • Eibinger, Tobias & Deixelberger, Beate & Manner, Hans, 2024. "Panel data in environmental economics: Econometric issues and applications to IPAT models," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:jeeman:v:125:y:2024:i:c:s0095069624000159
    DOI: 10.1016/j.jeem.2024.102941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069624000159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2024.102941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    2. Gonçalves, Sílvia & Perron, Benoit, 2014. "Bootstrapping factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
    3. Alexander Chudik & Kamiar Mohaddes & M. Hashem Pesaran & Mehdi Raissi, 2016. "Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors," Advances in Econometrics, in: Essays in Honor of man Ullah, volume 36, pages 85-135, Emerald Group Publishing Limited.
    4. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    5. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    6. Joakim Westerlund & David L. Edgerton, 2008. "A Simple Test for Cointegration in Dependent Panels with Structural Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 665-704, October.
    7. G. Forchini & Bin Jiang & Bin Peng, 2015. "Consistent Estimation in Large Heterogeneous Panels with Multifactor Structure Endogeneity," Monash Econometrics and Business Statistics Working Papers 14/15, Monash University, Department of Econometrics and Business Statistics.
    8. Chingnun Lee & Jyh-Lin Wu & Lixiong Yang, 2016. "A Simple Panel Unit-Root Test with Smooth Breaks in the Presence of a Multifactor Error Structure," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(3), pages 365-393, June.
    9. Anindya Banerjee & Massimiliano Marcellino & Chiara Osbat, 2004. "Some cautions on the use of panel methods for integrated series of macroeconomic data," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 322-340, December.
    10. Tore Bersvendsen & Jan Ditzen, 2021. "Testing for slope heterogeneity in Stata," Stata Journal, StataCorp LP, vol. 21(1), pages 51-80, March.
    11. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    12. Kaddour Hadri, 2000. "Testing for stationarity in heterogeneous panel data," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 148-161.
    13. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    14. Zheng, Li & Yuan, Ling & Khan, Zeeshan & Badeeb, Ramez Abubakr & Zhang, Leilei, 2023. "How G-7 countries are paving the way for net-zero emissions through energy efficient ecosystem?," Energy Economics, Elsevier, vol. 117(C).
    15. Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Feb 2021.
    16. Jan Ditzen, 2018. "Estimating dynamic common-correlated effects in Stata," Stata Journal, StataCorp LP, vol. 18(3), pages 585-617, September.
    17. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    18. Hande Karabiyik & Franz C. Palm & Jean-Pierre Urbain, 2019. "Econometric Analysis of Panel Data Models with Multifactor Error Structures," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 495-522, August.
    19. Christoph Hanck, 2013. "An Intersection Test for Panel Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 183-203, February.
    20. Jan Ditzen, 2021. "Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2," Stata Journal, StataCorp LP, vol. 21(3), pages 687-707, September.
    21. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    22. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    23. Shiyun Cao & Qiankun Zhou, 2022. "Common Correlated Effects Estimation for Dynamic Heterogeneous Panels with Non-Stationary Multi-Factor Error Structures," Econometrics, MDPI, vol. 10(3), pages 1-27, August.
    24. repec:adr:anecst:y:2012:i:107-108:p:12 is not listed on IDEAS
    25. Ng, Serena, 2008. "A Simple Test for Nonstationarity in Mixed Panels," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 113-127, January.
    26. Damiaan Persyn & Joakim Westerlund, 2008. "Error-correction–based cointegration tests for panel data," Stata Journal, StataCorp LP, vol. 8(2), pages 232-241, June.
    27. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2019. "Structural changes in heterogeneous panels with endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 883-892, September.
    28. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    29. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    30. Jan Ditzen & Simon Reese, 2023. "xtnumfac: A battery of estimators for the number of common factors in time series and panel-data models," Stata Journal, StataCorp LP, vol. 23(2), pages 438-454, June.
    31. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    32. Pesaran, M. Hashem, 2012. "On the interpretation of panel unit root tests," Economics Letters, Elsevier, vol. 116(3), pages 545-546.
    33. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    34. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    35. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    36. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    37. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    38. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    39. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    40. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    41. Opoku, Eric Evans Osei & Dogah, Kingsley E. & Aluko, Olufemi Adewale, 2022. "The contribution of human development towards environmental sustainability," Energy Economics, Elsevier, vol. 106(C).
    42. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    43. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    44. Giovanni Forchini & Bin Jiang & Bin Peng, 2015. "Consistent Estimation in Large Heterogeneous Panels with Multifactor Structure and Endogeneity," School of Economics Discussion Papers 0315, School of Economics, University of Surrey.
    45. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    46. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    47. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    48. Harding, Matthew & Lamarche, Carlos, 2011. "Least squares estimation of a panel data model with multifactor error structure and endogenous covariates," Economics Letters, Elsevier, vol. 111(3), pages 197-199, June.
    49. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    50. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    51. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    52. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    53. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    54. Christoph Hanck, 2012. "Do Panel Cointegration Tests Produce "Mixed Signals"?," Annals of Economics and Statistics, GENES, issue 107-108, pages 299-310.
    55. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    56. Joakim Westerlund, 2014. "Heteroscedasticity Robust Panel Unit Root Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 112-135, January.
    57. Trapani, Lorenzo, 2021. "Inferential theory for heterogeneity and cointegration in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 474-503.
    58. Nelson C. Mark & Donggyu Sul, 2003. "Cointegration Vector Estimation by Panel DOLS and Long‐run Money Demand," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 655-680, December.
    59. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    60. Martin Wagner & Karsten Reichold, 2023. "Panel cointegrating polynomial regressions: group-mean fully modified OLS estimation and inference," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 358-392, April.
    61. Sebastian Kripfganz & Vasilis Sarafidis, 2021. "Instrumental-variable estimation of large-T panel-data models with common factors," Stata Journal, StataCorp LP, vol. 21(3), pages 659-686, September.
    62. Pablo-Romero, M.P. & Cruz, L. & Barata, E., 2017. "Testing the transport energy-environmental Kuznets curve hypothesis in the EU27 countries," Energy Economics, Elsevier, vol. 62(C), pages 257-269.
    63. Jerry Coakley & Ana-Maria Fuertes & Ron Smith, 2002. "A Principal Components Approach to Cross-Section Dependence in Panels," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B5-3, International Conferences on Panel Data.
    64. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    65. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    66. Martin Wagner, 2015. "The Environmental Kuznets Curve, Cointegration and Nonlinearity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(6), pages 948-967, September.
    67. repec:bla:obuest:v:61:y:1999:i:0:p:653-70 is not listed on IDEAS
    68. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    69. Westerlund, Joakim & Urbain, Jean-Pierre, 2015. "Cross-sectional averages versus principal components," Journal of Econometrics, Elsevier, vol. 185(2), pages 372-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Jing & Bin Zhou & Zhenliang Liao, 2024. "Decoupling Analysis of Economic Growth and Carbon Emissions in Xinjiang Based on Tapio and Logarithmic Mean Divisia Index Models," Sustainability, MDPI, vol. 16(18), pages 1-17, September.
    2. Xuxia Li & Huimin Wang & Ali Kharrazi & Brian D. Fath & Guijun Liu & Gang Liu & Yi Xiao & Xiaoying Lai, 2024. "A network analysis of external shocks on the dynamics and resilience of the global staple food trade," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 16(4), pages 845-865, August.
    3. Jiaming Wang & Chengyao Lin & Xiangyun Wang & Shuwen Wang, 2024. "Environmental Regulation, Factor Marketisation Allocation and Carbon Emissions Performance: Empirical Evidence from Resource-Based Cities in China," Sustainability, MDPI, vol. 16(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.
    2. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    3. Mariam Camarero & Sergi Moliner & Cecilio Tamarit, 2022. "Which are the long-run determinants of US outward FDI? Evidence using large long-memory panels," Working Papers 2022.08, International Network for Economic Research - INFER.
    4. Skare, Marinko & Ozturk, Ilhan & Porada-Rochoń, Małgorzata & Stjepanovic, Sasa, 2024. "Energy as the new frontier: Dynamic panel data analysis revealing energy's transformative role in economic growth and technological progress," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    5. Le Clech, Néstor A., 2024. "Policy market orientation, property rights, and corruption effects on the rent of non-renewable resources in Latin America and the Caribbean," Resources Policy, Elsevier, vol. 91(C).
    6. In Choi, 2012. "Panel Cointegration," Working Papers 1208, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    7. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    8. Škare, Marinko & Porada-Rochoń, Małgorzata, 2023. "Are we making progress on decarbonization? A panel heterogeneous study of the long-run relationship in selected economies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    9. R. Golinelli & I. Mammi & A. Musolesi, 2018. "Parameter heterogeneity, persistence and cross-sectional dependence: new insights on fiscal policy reaction functions for the Euro area," Working Papers wp1120, Dipartimento Scienze Economiche, Universita' di Bologna.
    10. Acikgoz, Senay & Ben Ali, Mohamed Sami, 2019. "Where does economic growth in the Middle Eastern and North African countries come from?," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 172-183.
    11. Frauke Dobnik, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 0303, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    12. repec:zbw:rwirep:0303 is not listed on IDEAS
    13. Dobnik, Frauke, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 303, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Trofimov, Ivan D., 2020. "Public capital and productive economy profits: evidence from OECD economies," MPRA Paper 106848, University Library of Munich, Germany.
    15. Mitch Kunce, 2023. "Unemployment and Suicide in the United States: The Import of Addressing Cross-Sectional Dependence," Bulletin of Applied Economics, Risk Market Journals, vol. 10(1), pages 1-19.
    16. Qamruzzaman, Md, 2022. "Nexus between renewable energy, foreign direct investment, and agro-productivity: The mediating role of carbon emission," Renewable Energy, Elsevier, vol. 184(C), pages 526-540.
    17. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    18. Jian Xue & Zeeshan Rasool & Raima Nazar & Ahmad Imran Khan & Shaukat Hussain Bhatti & Sajid Ali, 2021. "Revisiting Natural Resources—Globalization-Environmental Quality Nexus: Fresh Insights from South Asian Countries," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    19. Dorothée Charlier & Florian Fizaine, 2020. "Does Becoming Richer Lead to a Reduction in Natural Resource Consumption? An Empirical Refutation of the Kuznets Material Curve," Working Papers 2020.05, FAERE - French Association of Environmental and Resource Economists.
    20. Breitung, Jörg & Pesaran, Mohammad Hashem, 2005. "Unit roots and cointegration in panels," Discussion Paper Series 1: Economic Studies 2005,42, Deutsche Bundesbank.
    21. Omri, Anis, 2018. "Entrepreneurship, sectoral outputs and environmental improvement: International evidence," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 46-55.

    More about this item

    Keywords

    IPAT models; Nonstationary panel data; Cross-sectional dependence; Panel cointegration; GHG emissions; Common correlated effects;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R49 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:125:y:2024:i:c:s0095069624000159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.