IDEAS home Printed from https://ideas.repec.org/p/boc/econ21/3.html
   My bibliography  Save this paper

Instrumental-variable estimation of large-T panel-data models with common factors

Author

Listed:
  • Sebastian Kripfganz

    (University of Exeter Business School)

  • Vasilis Sarafidis

    (BI Norwegian Business School)

Abstract

We introduce the xtivdfreg command in Stata, which implements a general instrumental variables (IV) approach for estimating panel data models with a large number of time series observations, T, and unobserved common factors or interactive effects, as developed by Norkute, Sarafidis, Yamagata, and Cui (2021, Journal of Econometrics) and Cui, Norkute, Sarafidis, and Yamagata (2020, ISER Discussion Paper). The underlying idea of this approach is to project out the common factors from exogenous covariates using principal components analysis, and to run IV regression in both of two stages, using defactored covariates as instruments. The resulting two-stage IV (2SIV) estimator is valid for models with homogeneous or heterogeneous slope coefficients, and has several advantages relative to existing popular approaches. In addition, the xtivdfreg command extends the 2SIV approach in two major ways. Firstly, the algorithm accommodates estimation of unbalanced panels. Secondly, the algorithm permits a flexible specification of instruments. It is shown that when one imposes zero factors, the xtivdfreg command can replicate the results of the popular ivregress Stata command. Notably, unlike ivregress, xtivdfreg permits estimation of the two-way error components panel data model with heterogeneous slope coefficients.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sebastian Kripfganz & Vasilis Sarafidis, 2021. "Instrumental-variable estimation of large-T panel-data models with common factors," Economics Virtual Symposium 2021 3, Stata Users Group.
  • Handle: RePEc:boc:econ21:3
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/econ2021/Econ21_Kripfganz.pdf
    File Function: presentation materials
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    2. Jan Ditzen, 2018. "Estimating dynamic common-correlated effects in Stata," Stata Journal, StataCorp LP, vol. 18(3), pages 585-617, September.
    3. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    4. Sergio Correia, 2016. "reghdfe: Estimating linear models with multi-way fixed effects," 2016 Stata Conference 24, Stata Users Group.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Sebastian Kripfganz & Vasilis Sarafidis, 2021. "Instrumental-variable estimation of large-T panel-data models with common factors," Stata Journal, StataCorp LP, vol. 21(3), pages 659-686, September.
    7. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yugang He, 2024. "E-commerce and foreign direct investment: pioneering a new era of trade strategies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    2. repec:ags:aaea22:335448 is not listed on IDEAS
    3. Van Bon Nguyen, 2023. "The remittance inflows - private investment nexus in Asian developing countries: does institutional quality matter?," Economic Research Guardian, Mutascu Publishing, vol. 13(1), pages 31-46, June.
    4. Jaromír Baxa & Michal Paulus, 2024. "Exchange rate misalignments, growth, and institutions," Empirical Economics, Springer, vol. 67(4), pages 1705-1799, October.
    5. Chen, Yan & Murshed, Muntasir & Sinha, Avik & Alam, Mohammad Mahtab & Khudoykulov, Khurshid, 2024. "Revisiting the resource curse hypothesis from the viewpoint of green growth: The role of Fintech as the de-cursing agent," Resources Policy, Elsevier, vol. 95(C).
    6. Pengyu Chen & Yiannis Karavias & Elias Tzavalis, 2022. "Panel unit-root tests with structural breaks," Stata Journal, StataCorp LP, vol. 22(3), pages 664-678, September.
    7. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    8. Le Clech, Néstor A., 2024. "Policy market orientation, property rights, and corruption effects on the rent of non-renewable resources in Latin America and the Caribbean," Resources Policy, Elsevier, vol. 91(C).
    9. Eibinger, Tobias & Deixelberger, Beate & Manner, Hans, 2024. "Panel data in environmental economics: Econometric issues and applications to IPAT models," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    10. Wen, Jun & Zhao, Xin-Xin & Fu, Qiang & Chang, Chun-Ping, 2023. "The impact of extreme weather events on green innovation: Which ones bring to the most harm?," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    11. Sebastian Kripfganz & Vasilis Sarafidis, 2021. "Instrumental-variable estimation of large-T panel-data models with common factors," Stata Journal, StataCorp LP, vol. 21(3), pages 659-686, September.
    12. Okere, Kingsley Ikechukwu & Dimnwobi, Stephen Kelechi & Ekesiobi, Chukwunonso & Onuoha, Favour Chidinma, 2023. "Turning the tide on energy poverty in sub-Saharan Africa: Does public debt matter?," Energy, Elsevier, vol. 282(C).
    13. Agoraki, Maria-Eleni K. & Aslanidis, Nektarios & Kouretas, Georgios P., 2022. "U.S. banks’ lending, financial stability, and text-based sentiment analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 73-90.
    14. Samuel Asumadu Sarkodie & Ahdi Noomen Ajmi & Festus Fatai Adedoyin & Phebe Asantewaa Owusu, 2021. "Econometrics of Anthropogenic Emissions, Green Energy-Based Innovations, and Energy Intensity across OECD Countries," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    15. Livio Di Matteo & Robert Petrunia, 2022. "Does economic inequality breed murder? An empirical investigation of the relationship between economic inequality and homicide rates in Canadian provinces and CMAs," Empirical Economics, Springer, vol. 62(6), pages 2951-2988, June.
    16. Agoraki, Maria-Eleni & Aslanidis, Nektarios & Kouretas, Georgios P., 2021. "U.S. Banks’ lending behaviour, financial stability, and investor sentiment: A textual analysis," Working Papers 2072/534915, Universitat Rovira i Virgili, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Clech, Néstor A., 2024. "Policy market orientation, property rights, and corruption effects on the rent of non-renewable resources in Latin America and the Caribbean," Resources Policy, Elsevier, vol. 91(C).
    2. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    3. Jaromír Baxa & Michal Paulus, 2024. "Exchange rate misalignments, growth, and institutions," Empirical Economics, Springer, vol. 67(4), pages 1705-1799, October.
    4. Eibinger, Tobias & Deixelberger, Beate & Manner, Hans, 2024. "Panel data in environmental economics: Econometric issues and applications to IPAT models," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    5. Chen, Yan & Murshed, Muntasir & Sinha, Avik & Alam, Mohammad Mahtab & Khudoykulov, Khurshid, 2024. "Revisiting the resource curse hypothesis from the viewpoint of green growth: The role of Fintech as the de-cursing agent," Resources Policy, Elsevier, vol. 95(C).
    6. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    7. repec:ags:aaea22:335448 is not listed on IDEAS
    8. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    9. Hailemariam, Abebe & Ivanovski, Kris & Dzhumashev, Ratbek, 2022. "Does R&D investment in renewable energy technologies reduce greenhouse gas emissions?," Applied Energy, Elsevier, vol. 327(C).
    10. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    11. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Ovidijus Stauskas, 2023. "Complete Theory for CCE Under Heterogeneous Slopes and General Unknown Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 283-303, April.
    13. Jan Ditzen & Yiannis Karavias & Joakim Westerlund, 2022. "Multiple Structural Breaks in Interactive Effects Panel Data and the Impact of Quantitative Easing on Bank Lending," Papers 2211.06707, arXiv.org, revised Jan 2023.
    14. Zhenhao Gong & Min Seong Kim, 2024. "Improved inference for interactive fixed effects model under cross-sectional dependence," Empirical Economics, Springer, vol. 67(2), pages 727-760, August.
    15. Jan Ditzen, 2021. "Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2," Stata Journal, StataCorp LP, vol. 21(3), pages 687-707, September.
    16. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    17. Chen, Jia & Shin, Yongcheol & Zheng, Chaowen, 2022. "Estimation and inference in heterogeneous spatial panels with a multifactor error structure," Journal of Econometrics, Elsevier, vol. 229(1), pages 55-79.
    18. Arnab Bhattacharjee & Jan Ditzen & Sean Holly, 2022. "Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Panel Modeling, Micro Applications, and Econometric Methodology, volume 43, pages 37-60, Emerald Group Publishing Limited.
    19. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    20. Ignace De Vos & Gerdie Everaert & Vasilis Sarafidis, 2021. "A method for evaluating the rank condition for CCE estimators," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1013, Ghent University, Faculty of Economics and Business Administration.
    21. Bhattacharjee, A. & Ditzen, J. & Holly, S., 2020. "Spatial and Spatio-temporal Engle-Granger representations, Networks and Common Correlated Effects," Cambridge Working Papers in Economics 2075, Faculty of Economics, University of Cambridge.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:econ21:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.