IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v58y2005i3p301-311.html
   My bibliography  Save this article

Determining the quality of conjoint analysis results using violation of a priori signs

Author

Listed:
  • Mishra, Sanjay
  • Umesh, U. N.

Abstract

No abstract is available for this item.

Suggested Citation

  • Mishra, Sanjay & Umesh, U. N., 2005. "Determining the quality of conjoint analysis results using violation of a priori signs," Journal of Business Research, Elsevier, vol. 58(3), pages 301-311, March.
  • Handle: RePEc:eee:jbrese:v:58:y:2005:i:3:p:301-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148-2963(03)00177-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Umesh & Sanjay Mishra, 1990. "A Monte Carlo investigation of conjoint analysis index-of-fit: Goodness of fit, significance and power," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 33-44, March.
    2. Jerry Wind & Paul E. Green & Douglas Shifflet & Marsha Scarbrough, 1989. "Courtyard by Marriott : Designing a Hotel Facility with Consumer-Based Marketing Models," Interfaces, INFORMS, vol. 19(1), pages 25-47, February.
    3. Farber, Stephen & Griner, Brian, 2000. "Valuing watershed quality improvements using conjoint analysis," Ecological Economics, Elsevier, vol. 34(1), pages 63-76, July.
    4. Darmon, Rene Y. & Rouzies, Dominique, 1999. "Internal Validity of Conjoint Analysis Under Alternative Measurement Procedures," Journal of Business Research, Elsevier, vol. 46(1), pages 67-81, September.
    5. Paul E. Green & Abba M. Krieger, 1992. "An Application of a Product Positioning Model to Pharmaceutical Products," Marketing Science, INFORMS, vol. 11(2), pages 117-132.
    6. Michael Hagerty & V. Srinivasan, 1991. "Comparing the predictive powers of alternative multiple regression models," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 77-85, March.
    7. Paul E. Green & Abba M. Krieger & Yoram Wind, 2001. "Thirty Years of Conjoint Analysis: Reflections and Prospects," Interfaces, INFORMS, vol. 31(3_supplem), pages 56-73, June.
    8. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 337-369, September.
    9. Dominique Rouzies & René Y. Darmon, 1999. "Internal Validity of Conjoint Analysis Under Alternative Measurement Procedures," Post-Print hal-00537590, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameseder, Christoph & Haas, Rainer & Meixner, Oliver, 2008. "Viability of Values and Attitudes Concerning Purchase Intentions and Benefit Attribution for an Organic Sport Drink," 110th Seminar, February 18-22, 2008, Innsbruck-Igls, Austria 49766, European Association of Agricultural Economists.
    2. Meixner, Oliver & Haas, Rainer & Pochtrager, Siegfried, 2007. "Importance and Relevance of Quality Labels in the Austrian Meat Supply Chain," 2007 1st Forum, February 15-17, 2007, Innsbruck, Austria 6598, International European Forum on System Dynamics and Innovation in Food Networks.
    3. Roest, Henk & Rindfleisch, Aric, 2010. "The influence of quality cues and typicality cues on restaurant purchase intention," Journal of Retailing and Consumer Services, Elsevier, vol. 17(1), pages 10-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krieger, Abba M. & Green, Paul E., 2006. "A tactical model for resource allocation and its application to advertising budgeting," European Journal of Operational Research, Elsevier, vol. 170(3), pages 935-949, May.
    2. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    3. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    4. Halme, Merja & Kallio, Markku, 2011. "Estimation methods for choice-based conjoint analysis of consumer preferences," European Journal of Operational Research, Elsevier, vol. 214(1), pages 160-167, October.
    5. Montgomery, David B. & Ramus, Catherine, 2007. "Including Corporate Social Responsibility, Environmental Sustainaibility, and Ethics in Calibrating MBA Job Preferences," Research Papers 1981, Stanford University, Graduate School of Business.
    6. Baier, Daniel & Gaul, Wolfgang, 1998. "Optimal product positioning based on paired comparison data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 365-392, November.
    7. Ronny Baierl, 2018. "Understanding Entrepreneurial Team Decisions: Measuring Team Members’ Influences With The Metricized Limit Conjoint Analysis," SAGE Open, , vol. 8(2), pages 21582440187, May.
    8. Park, Chan Su, 2004. "The robustness of hierarchical Bayes conjoint analysis under alternative measurement scales," Journal of Business Research, Elsevier, vol. 57(10), pages 1092-1097, October.
    9. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    10. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    11. Merja Halme & Kari Linden & Kimmo Kääriä, 2009. "Patients’ Preferences for Generic and Branded Over-the-Counter Medicines," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 2(4), pages 243-255, December.
    12. James M. Williamson & Hale W. Thurston & Matthew T. Heberling, 2007. "Valuing acid mine drainage remediation in West Virginia: benefit transfer with preference calibration," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 8(4), pages 271-293, December.
    13. Marianne Bertrand & Dean S. Karlan & Sendhil Mullainathan & Eldar Shafir & Jonathan Zinman, 2005. "What's Psychology Worth? A Field Experiment in the Consumer Credit Market," Working Papers 918, Economic Growth Center, Yale University.
    14. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.
    15. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    16. Yoon, Moon Gil & Yoon, Duk Young & Yang, Tae Won, 2006. "Impact of e-business on air travel markets: Distribution of airline tickets in Korea," Journal of Air Transport Management, Elsevier, vol. 12(5), pages 253-260.
    17. Norbert Bajkó & Zsolt Fülöp & Kinga Nagyné Pércsi, 2022. "Changes in the Innovation- and Marketing-Habits of Family SMEs in the Foodstuffs Industry, Caused by the Coronavirus Pandemic in Hungary," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    18. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    19. Amanda Belarmino & Yoon Koh & Hyejo Hailey Shin, 2022. "Blurred lines: comparing room rates, star-ratings, and user-generated contents for full-service and select-service hotels," Service Business, Springer;Pan-Pacific Business Association, vol. 16(3), pages 721-742, September.
    20. Srinivasan, V. Seenu & Netzer, Oded, 2007. "Adaptive Self-Explication of Multi-attribute Preferences," Research Papers 1979, Stanford University, Graduate School of Business.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:58:y:2005:i:3:p:301-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.