IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v101y2019icp203-217.html
   My bibliography  Save this article

Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type

Author

Listed:
  • Salminen, Joni
  • Yoganathan, Vignesh
  • Corporan, Juan
  • Jansen, Bernard J.
  • Jung, Soon-Gyo

Abstract

As complex data becomes the norm, greater understanding of machine learning (ML) applications is needed for content marketers. Unstructured data, scattered across platforms in multiple forms, impedes performance and user experience. Automated classification offers a solution to this. We compare three state-of-the-art ML techniques for multilabel classification - Random Forest, K-Nearest Neighbor, and Neural Network - to automatically tag and classify online news articles. Neural Network performs the best, yielding an F1 Score of 70% and provides satisfactory cross-platform applicability on the same organisation's YouTube content. The developed model can automatically label 99.6% of the unlabelled website and 96.1% of the unlabelled YouTube content. Thus, we contribute to marketing literature via comparative evaluation of ML models for multilabel content classification, and cross-channel validation for a different type of content. Results suggest that organisations may optimise ML to auto-tag content across various platforms, opening avenues for aggregated analyses of content performance.

Suggested Citation

  • Salminen, Joni & Yoganathan, Vignesh & Corporan, Juan & Jansen, Bernard J. & Jung, Soon-Gyo, 2019. "Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type," Journal of Business Research, Elsevier, vol. 101(C), pages 203-217.
  • Handle: RePEc:eee:jbrese:v:101:y:2019:i:c:p:203-217
    DOI: 10.1016/j.jbusres.2019.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296319302607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2019.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Dhamotharan, Lalitha, 2022. "A dynamic ensemble selection method for bank telemarketing sales prediction," Journal of Business Research, Elsevier, vol. 139(C), pages 368-382.
    2. Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
    3. Christen, Tatjana & Hess, Manuel & Grichnik, Dietmar & Wincent, Joakim, 2022. "Value-based pricing in digital platforms: A machine learning approach to signaling beyond core product attributes in cross-platform settings," Journal of Business Research, Elsevier, vol. 152(C), pages 82-92.
    4. Santiago Carbo-Valverde & Pedro Cuadros-Solas & Francisco Rodríguez-Fernández, 2020. "A machine learning approach to the digitalization of bank customers: Evidence from random and causal forests," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-39, October.
    5. Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
    6. Kim, Jaehwan & Kang, Moon Young, 2022. "Sustainable success in the music industry: Empirical analysis of music preferences," Journal of Business Research, Elsevier, vol. 142(C), pages 1068-1076.
    7. Sachin Kumar & Aditya Sharma & B Kartheek Reddy & Shreyas Sachan & Vaibhav Jain & Jagvinder Singh, 2022. "An intelligent model based on integrated inverse document frequency and multinomial Naive Bayes for current affairs news categorisation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1341-1355, June.
    8. Jakub Horak & Tomas Krulicky & Zuzana Rowland & Veronika Machova, 2020. "Creating a Comprehensive Method for the Evaluation of a Company," Sustainability, MDPI, vol. 12(21), pages 1-23, November.
    9. Salminen, Joni & Kandpal, Chandrashekhar & Kamel, Ahmed Mohamed & Jung, Soon-gyo & Jansen, Bernard J., 2022. "Creating and detecting fake reviews of online products," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    10. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    11. Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
    12. Ayat Zaki Ahmed & Manuel Rodríguez Díaz, 2022. "A Methodology for Machine-Learning Content Analysis to Define the Key Labels in the Titles of Online Customer Reviews with the Rating Evaluation," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    13. Joni Salminen & Mekhail Mustak & Muhammad Sufyan & Bernard J. Jansen, 2023. "How can algorithms help in segmenting users and customers? A systematic review and research agenda for algorithmic customer segmentation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 677-692, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:101:y:2019:i:c:p:203-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.