IDEAS home Printed from https://ideas.repec.org/a/spr/joamsc/v52y2024i4d10.1007_s11747-023-01000-x.html
   My bibliography  Save this article

Beyond text: Marketing strategy in a world turned upside down

Author

Listed:
  • Xin (Shane) Wang

    (Virginia Tech)

  • Neil Bendle

    (University of Georgia)

  • Yinjie Pan

    (Virginia Tech)

Abstract

Analyzing unstructured text, e.g., online reviews and social media, has already made a major impact, yet a vast array of publicly available, unstructured non-text data houses latent insight into consumers and markets. This article focuses on three specific types of such data: image, video, and audio. Many researchers see the potential in analyzing these data sources, going beyond text, but remain unsure about how to gain insights. We review prior research, give practical methodological advice, highlight relevant marketing questions, and suggest avenues for future exploration. Critically, we spotlight the machine learning capabilities of major platforms like AWS, GCP, and Azure, and how they are equipped to handle such data. By evaluating the performance of these platforms in tasks relevant to marketing managers, we aim to guide researchers in optimizing their methodological choices. Our study has significant managerial implications by identifying actionable procedures where abundant data beyond text could be utilized.

Suggested Citation

  • Xin (Shane) Wang & Neil Bendle & Yinjie Pan, 2024. "Beyond text: Marketing strategy in a world turned upside down," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 939-954, July.
  • Handle: RePEc:spr:joamsc:v:52:y:2024:i:4:d:10.1007_s11747-023-01000-x
    DOI: 10.1007/s11747-023-01000-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11747-023-01000-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11747-023-01000-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li Xiao & Min Ding, 2014. "Just the Faces: Exploring the Effects of Facial Features in Print Advertising," Marketing Science, INFORMS, vol. 33(3), pages 338-352, May.
    2. Kawaf, Fatema, 2019. "Capturing digital experience: The method of screencast videography," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 169-184.
    3. Hartmann, Jochen & Huppertz, Juliana & Schamp, Christina & Heitmann, Mark, 2019. "Comparing automated text classification methods," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 20-38.
    4. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    5. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    6. Rik Pieters & Michel Wedel, 2012. "Ad Gist: Ad Communication in a Single Eye Fixation," Marketing Science, INFORMS, vol. 31(1), pages 59-73, January.
    7. Xueming Luo & Siliang Tong & Zheng Fang & Zhe Qu, 2019. "Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases," Marketing Science, INFORMS, vol. 38(6), pages 937-947, November.
    8. Jan R. Landwehr & Aparna A. Labroo & Andreas Herrmann, 2011. "Gut Liking for the Ordinary: Incorporating Design Fluency Improves Automobile Sales Forecasts," Marketing Science, INFORMS, vol. 30(3), pages 416-429, 05-06.
    9. Klostermann, Jan & Plumeyer, Anja & Böger, Daniel & Decker, Reinhold, 2018. "Extracting brand information from social networks: Integrating image, text, and social tagging data," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 538-556.
    10. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    11. Tom van Laer & Jennifer Edson Escalas & Stephan Ludwig & Ellis A van den Hende & Gita V Johar & J Jeffrey Inman & Paul M Herr, 2019. "What Happens in Vegas Stays on TripAdvisor? A Theory and Technique to Understand Narrativity in Consumer Reviews," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(2), pages 267-285.
    12. Shasha Lu & Li Xiao & Min Ding, 2016. "A Video-Based Automated Recommender (VAR) System for Garments," Marketing Science, INFORMS, vol. 35(3), pages 484-510, May.
    13. Liu Liu & Daria Dzyabura & Natalie Mizik, 2020. "Visual Listening In: Extracting Brand Image Portrayed on Social Media," Marketing Science, INFORMS, vol. 39(4), pages 669-686, July.
    14. Thales Teixeira & Rosalind Picard & Rana el Kaliouby, 2014. "Why, When, and How Much to Entertain Consumers in Advertisements? A Web-Based Facial Tracking Field Study," Marketing Science, INFORMS, vol. 33(6), pages 809-827, November.
    15. Xin (Shane) Wang & Shijie Lu & X I Li & Mansur Khamitov & Neil Bendle & J. Jeffrey Inman & Andrew T Stephen, 2021. "Audio Mining: The Role of Vocal Tone in Persuasion," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 48(2), pages 189-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    2. Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
    3. Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
    4. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    5. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    6. Huang, Ming-Hui & Rust, Roland T., 2022. "A Framework for Collaborative Artificial Intelligence in Marketing," Journal of Retailing, Elsevier, vol. 98(2), pages 209-223.
    7. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    8. Schwenzow, Jasper & Hartmann, Jochen & Schikowsky, Amos & Heitmann, Mark, 2021. "Understanding videos at scale: How to extract insights for business research," Journal of Business Research, Elsevier, vol. 123(C), pages 367-379.
    9. Shuili Du & Assaad El Akremi & Ming Jia, 2023. "Quantitative Research on Corporate Social Responsibility: A Quest for Relevance and Rigor in a Quickly Evolving, Turbulent World," Journal of Business Ethics, Springer, vol. 187(1), pages 1-15, September.
    10. Feng, Cong & Fay, Scott, 2022. "An empirical investigation of forward-looking retailer performance using parking lot traffic data derived from satellite imagery," Journal of Retailing, Elsevier, vol. 98(4), pages 633-646.
    11. Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
    12. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    13. Alantari, Huwail J. & Currim, Imran S. & Deng, Yiting & Singh, Sameer, 2022. "An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 1-19.
    14. Gupta, Shaphali & Leszkiewicz, Agata & Kumar, V. & Bijmolt, Tammo & Potapov, Dmitriy, 2020. "Digital Analytics: Modeling for Insights and New Methods," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 26-43.
    15. Villarroel Ordenes, Francisco & Silipo, Rosaria, 2021. "Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications," Journal of Business Research, Elsevier, vol. 137(C), pages 393-410.
    16. Kadić-Maglajlić, Selma & Lages, Cristiana R. & Pantano, Eleonora, 2024. "No time to lie: Examining the identity of pro-vaccination and anti-vaccination supporters through user-generated content," Social Science & Medicine, Elsevier, vol. 347(C).
    17. Alex Burnap & John R. Hauser & Artem Timoshenko, 2019. "Product Aesthetic Design: A Machine Learning Augmentation," Papers 1907.07786, arXiv.org, revised Nov 2022.
    18. He, Jiaxiu & Li, Bingqing & Wang, Xin (Shane), 2023. "Image features and demand in the sharing economy: A study of Airbnb," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 760-780.
    19. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    20. repec:ags:aaea22:335600 is not listed on IDEAS
    21. Zhao, Lu & Zhang, Mingli & Ming, Yaxin & Niu, Tao & Wang, Yu, 2023. "The effect of image richness on customer engagement: Evidence from Sina Weibo," Journal of Business Research, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:52:y:2024:i:4:d:10.1007_s11747-023-01000-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.