Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data
Author
Abstract
Suggested Citation
DOI: 10.1287/mksc.2013.0825
Download full text from publisher
References listed on IDEAS
- Schweidel, David A. & Fader, Peter S., 2009. "Dynamic changepoints revisited: An evolving process model of new product sales," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 119-124.
- Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
- Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
- John Liechty & Rik Pieters & Michel Wedel, 2003. "Global and local covert visual attention: Evidence from a bayesian hidden markov model," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 519-541, December.
- Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
- David A. Schweidel & Eric T. Bradlow & Peter S. Fader, 2011. "Portfolio Dynamics for Customers of a Multiservice Provider," Management Science, INFORMS, vol. 57(3), pages 471-486, March.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
- Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.
- Shaohui Ma & Joachim Büschken, 2011. "Counting your customers from an “always a share” perspective," Marketing Letters, Springer, vol. 22(3), pages 243-257, September.
- Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
- Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
- Dominique M. Hanssens & Peter S. H. Leeflang & Dick R. Wittink, 2005. "Market response models and marketing practice," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(4‐5), pages 423-434, July.
- Wesley Hartmann & Puneet Manchanda & Harikesh Nair & Matthew Bothner & Peter Dodds & David Godes & Kartik Hosanagar & Catherine Tucker, 2008. "Modeling social interactions: Identification, empirical methods and policy implications," Marketing Letters, Springer, vol. 19(3), pages 287-304, December.
- David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Park, Chang Hee & Yoon, Tae Jung, 2022. "The dark side of up-selling promotions: Evidence from an analysis of cross-brand purchase behavior☆," Journal of Retailing, Elsevier, vol. 98(4), pages 647-666.
- Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
- Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2022. "Classification-based model selection in retail demand forecasting," International Journal of Forecasting, Elsevier, vol. 38(1), pages 209-223.
- Xin Liu & Yanju Zhou & Xiaohong Chen, 2018. "Mining Outlier Data in Mobile Internet-Based Large Real-Time Databases," Complexity, Hindawi, vol. 2018, pages 1-12, January.
- Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
- Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
- Arun Gopalakrishnan & Zhenling Jiang & Yulia Nevskaya & Raphael Thomadsen, 2021. "Can Non-tiered Customer Loyalty Programs Be Profitable?," Marketing Science, INFORMS, vol. 40(3), pages 508-526, May.
- Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
- Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2018. "The effects of mobile promotions on customer purchase dynamics," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 453-470.
- Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
- Peter Ebbes & Oded Netzer, 2022. "Using Social Network Activity Data to Identify and Target Job Seekers," Management Science, INFORMS, vol. 68(4), pages 3026-3046, April.
- Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.
- Arun Gopalakrishnan & Eric T. Bradlow & Peter S. Fader, 2017. "A Cross-Cohort Changepoint Model for Customer-Base Analysis," Marketing Science, INFORMS, vol. 36(2), pages 195-213, March.
- Holtrop, Niels & Wieringa, Jaap E., 2023. "Timing customer reactivation initiatives," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 570-589.
- Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
- Francesco Campanella, 2014. "Assess the Rating of SMEs by using Classification And Regression Trees (CART) with Qualitative Variables," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 16-32, August.
- Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
- Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
- Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David A. Schweidel & Eric T. Bradlow & Peter S. Fader, 2011. "Portfolio Dynamics for Customers of a Multiservice Provider," Management Science, INFORMS, vol. 57(3), pages 471-486, March.
- Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
- Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
- Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
- Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
- David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
- V. Kumar & S. Sriram & Anita Luo & Pradeep K. Chintagunta, 2011. "Assessing the Effect of Marketing Investments in a Business Marketing Context," Marketing Science, INFORMS, vol. 30(5), pages 924-940, September.
- Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
- Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
- Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
- Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
- Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
- Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
- Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2018. "The effects of mobile promotions on customer purchase dynamics," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 453-470.
- David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
- Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
- Chang, Chun-Wei & Zhang, Jonathan Z., 2016. "The Effects of Channel Experiences and Direct Marketing on Customer Retention in Multichannel Settings," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 77-90.
- Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
- Amirali Kani & Wayne S. DeSarbo & Duncan K. H. Fong, 2018. "A Factorial Hidden Markov Model for the Analysis of Temporal Change in Choice Models," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(3), pages 162-177, December.
- Clarence Lee & Elie Ofek & Thomas J. Steenburgh, 2018. "Personal and Social Usage: The Origins of Active Customers and Ways to Keep Them Engaged," Management Science, INFORMS, vol. 64(6), pages 2473-2495, June.
More about this item
Keywords
model selection; machine learning; data science; business intelligence; hidden Markov models; classification tree; random forest; posterior predictive model checking; hierarchical Bayesian methods; forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:33:y:2014:i:2:p:188-205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.