IDEAS home Printed from https://ideas.repec.org/a/bla/jfinan/v57y2002i3p1093-1111.html
   My bibliography  Save this article

How Accurate Are Value‐at‐Risk Models at Commercial Banks?

Author

Listed:
  • Jeremy Berkowitz
  • James O'Brien

Abstract

In recent years, the trading accounts at large commercial banks have grown substantially and become progressively more diverse and complex. We provide descriptive statistics on the trading revenues from such activities and on the associated Value‐at‐Risk (VaR) forecasts internally estimated by banks. For a sample of large bank holding companies, we evaluate the performance of banks trading risk models by examining the statistical accuracy of the VaR forecasts. Although a substantial literature has examined the statistical and economic meaning of Value‐at‐Risk models, this article is the first to provide a detailed analysis of the performance of models actually in use.

Suggested Citation

  • Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
  • Handle: RePEc:bla:jfinan:v:57:y:2002:i:3:p:1093-1111
    DOI: 10.1111/1540-6261.00455
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1540-6261.00455
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1540-6261.00455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 1999. "VaR without correlations for portfolios of derivative securities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 583-602, August.
    4. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    5. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    6. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    7. Jose A. Lopez & Christian Walter, 2000. "Evaluating covariance matrix forecasts in a value-at-risk framework," Working Paper Series 2000-21, Federal Reserve Bank of San Francisco.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy Berkowitz & James M. O'Brien, 2001. "How accurate are Value-at-Risk models at commercial banks?," Finance and Economics Discussion Series 2001-31, Board of Governors of the Federal Reserve System (U.S.).
    2. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    3. Weng, Haijie & Trück, Stefan, 2011. "Style analysis and Value-at-Risk of Asia-focused hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 19(5), pages 491-510, November.
    4. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    5. Wong, Woon K., 2010. "Backtesting value-at-risk based on tail losses," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 526-538, June.
    6. Turan G. Bali, 2007. "A Generalized Extreme Value Approach to Financial Risk Measurement," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1613-1649, October.
    7. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    8. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).
    9. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    10. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    11. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    12. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    13. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    14. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    15. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    17. Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
    18. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
    19. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    20. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfinan:v:57:y:2002:i:3:p:1093-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/afaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.