IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v31y2015i2p561-567.html
   My bibliography  Save this article

Applied mean-ETL optimization in using earnings forecasts

Author

Listed:
  • Shao, Barret Pengyuan
  • Rachev, Svetlozar T.
  • Mu, Yu

Abstract

In this article, we apply the mean-expected tail loss (ETL) portfolio optimization to the consensus temporary earnings forecasting (CTEF) data from global equities. The time series model with multivariate normal tempered stable (MNTS) innovations is used to generate the out-of-sample scenarios for the portfolio optimization. We find that (1) the CTEF variable continues to be of value in portfolio construction, (2) the mean-ETL portfolio optimization produces statistically significant active returns, and (3) the active returns generated in the mean-ETL portfolio with CTEF indicate a statistically significant stock selection.

Suggested Citation

  • Shao, Barret Pengyuan & Rachev, Svetlozar T. & Mu, Yu, 2015. "Applied mean-ETL optimization in using earnings forecasts," International Journal of Forecasting, Elsevier, vol. 31(2), pages 561-567.
  • Handle: RePEc:eee:intfor:v:31:y:2015:i:2:p:561-567
    DOI: 10.1016/j.ijforecast.2014.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207014001460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2014.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    2. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Guerard, John B. & Markowitz, Harry & Xu, GanLin, 2015. "Earnings forecasting in a global stock selection model and efficient portfolio construction and management," International Journal of Forecasting, Elsevier, vol. 31(2), pages 550-560.
    5. Edwin J. Elton & Martin J. Gruber & Mustafa Gultekin, 1981. "Expectations and Share Prices," Management Science, INFORMS, vol. 27(9), pages 975-987, September.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    8. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    9. Guerard, John Jr. & Blin, John & Bender, Steve, 1998. "Forecasting earnings composite variables, financial anomalies, and efficient Japanese and U.S. portfolios," International Journal of Forecasting, Elsevier, vol. 14(2), pages 255-259, June.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    11. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Hui & Min, Xinyu & Deng, Shijie, 2015. "Effectiveness of earnings forecasts in efficient global portfolio construction," International Journal of Forecasting, Elsevier, vol. 31(2), pages 568-574.
    2. Kurosaki, Tetsuo & Kim, Young Shin, 2022. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Finance Research Letters, Elsevier, vol. 45(C).
    3. Tetsuo Kurosaki & Young Shin Kim, 2020. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Papers 2010.08900, arXiv.org.
    4. Guerard, John B. & Markowitz, Harry & Xu, GanLin, 2015. "Earnings forecasting in a global stock selection model and efficient portfolio construction and management," International Journal of Forecasting, Elsevier, vol. 31(2), pages 550-560.
    5. Bianchi, Michele Leonardo & De Luca, Giovanni & Rivieccio, Giorgia, 2023. "Non-Gaussian models for CoVaR estimation," International Journal of Forecasting, Elsevier, vol. 39(1), pages 391-404.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    2. Rachev, Svetlozar & Jasic, Teo & Stoyanov, Stoyan & Fabozzi, Frank J., 2007. "Momentum strategies based on reward-risk stock selection criteria," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2325-2346, August.
    3. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    4. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
    5. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    6. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    7. Adabi Firouzjaee , Bagher & Mehrara , Mohsen & Mohammadi , Shapour, 2014. "Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 9(1), pages 1-30, October.
    8. Jaehyung Choi & Young Shin Kim & Ivan Mitov, 2014. "Reward-risk momentum strategies using classical tempered stable distribution," Papers 1403.6093, arXiv.org, revised Jun 2015.
    9. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    11. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    12. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    13. Dias, Alexandra, 2016. "The economic value of controlling for large losses in portfolio selection," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 81-91.
    14. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    15. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    16. Al Janabi, Mazin A.M., 2014. "Optimal and investable portfolios: An empirical analysis with scenario optimization algorithms under crisis market prospects," Economic Modelling, Elsevier, vol. 40(C), pages 369-381.
    17. Mouck, T., 1998. "Capital markets research and real world complexity: The emerging challenge of chaos theory," Accounting, Organizations and Society, Elsevier, vol. 23(2), pages 189-203, February.
    18. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    19. Choi, Jaehyung & Kim, Young Shin & Mitov, Ivan, 2015. "Reward-risk momentum strategies using classical tempered stable distribution," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 194-213.
    20. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:31:y:2015:i:2:p:561-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.