IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v38y2021ics1544612320301343.html
   My bibliography  Save this article

Multi-objective portfolio optimization under tempered stable Lévy distribution with Copula dependence

Author

Listed:
  • Gong, Xiao-Li
  • Xiong, Xiong

Abstract

Taking into account the leptokurtosis nature of financial returns distribution and the non-linear dependence structure of the underlying assets variables in portfolio, the tempered stable Lévy distribution and the Copula function (TS Copula) are employed to describe the multi-objective portfolio optimization problem. In order to investigate the modeling ability of TS distribution coupling with different Copula functions, the model is designed to maximize the benefits while minimizing the risk in finding a set of non-dominant Pareto solutions. The problem of constrained TS Copula multi-objective investment optimization is solved by using three intelligent algorithms, namely the NSGA-II, SPEA-II and MOPSO. Then the empirical studies in Chinese stock markets illustrate that the returns distribution is leptokurtic and heavy tailed. Furthermore, the Skewed-t Copula function coupling with tempered stable marginal distribution can effectively capture the thick tail distribution of portfolio returns and the non-linear asymmetric dependence structure among assets. It is the Skewed-t Copula coupling with tempered stable Lévy distribution that gets the best fitting performance. In addition, the MOPSO and NSGA-II intelligent algorithms are effective in solving TS Copula based multi-objective portfolio optimization.

Suggested Citation

  • Gong, Xiao-Li & Xiong, Xiong, 2021. "Multi-objective portfolio optimization under tempered stable Lévy distribution with Copula dependence," Finance Research Letters, Elsevier, vol. 38(C).
  • Handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612320301343
    DOI: 10.1016/j.frl.2020.101506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612320301343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Friend & Ebbe Rogge, 2005. "Correlation at First Sight," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(2), pages 155-183, July.
    2. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    3. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    4. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    5. Jimmie Goode & Kim & Fabozzi, 2015. "Full versus quasi MLE for ARMA-GARCH models with infinitely divisible innovations," Applied Economics, Taylor & Francis Journals, vol. 47(48), pages 5147-5158, October.
    6. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Measuring tail risk with GAS time varying copula, fat tailed GARCH model and hedging for crude oil futures," Pacific-Basin Finance Journal, Elsevier, vol. 55(C), pages 95-109.
    7. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    8. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    9. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    10. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    11. Gao, Chun-Ting & Zhou, Xiao-Hua, 2016. "Forecasting VaR and ES using dynamic conditional score models and skew Student distribution," Economic Modelling, Elsevier, vol. 53(C), pages 216-223.
    12. Branke, J. & Scheckenbach, B. & Stein, M. & Deb, K. & Schmeck, H., 2009. "Portfolio optimization with an envelope-based multi-objective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 684-693, December.
    13. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Kuang-Liang, 2023. "The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate," Journal of International Money and Finance, Elsevier, vol. 133(C).
    2. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    3. Lourme, Alexandre & Maurer, Frantz, 2017. "Testing the Gaussian and Student's t copulas in a risk management framework," Economic Modelling, Elsevier, vol. 67(C), pages 203-214.
    4. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    5. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    6. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    7. Gong, Xiaoli & Zhuang, Xintian, 2017. "Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 148-159.
    8. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    9. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    10. Bilel JARRAYA, 2013. "Asset Allocation And Portfolio Optimization Problems With Metaheuristics: A Literature Survey," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 3(4), pages 38-56, December.
    11. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    12. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    13. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    14. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    15. Jian Xiong & Rui Wang & Jiang Jiang, 2019. "Weapon Selection and Planning Problems Using MOEA/D with Distance-Based Divided Neighborhoods," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    16. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    17. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    18. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    19. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    20. Chao Xu & Jinchuan Ke & Xiaojun Zhao & Xiaofang Zhao, 2020. "Multiscale Quantile Correlation Coefficient: Measuring Tail Dependence of Financial Time Series," Sustainability, MDPI, vol. 12(12), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612320301343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.