IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v50y2020i1p80-94.html
   My bibliography  Save this article

Vattenfall Optimizes Offshore Wind Farm Design

Author

Listed:
  • Martina Fischetti

    (Vattenfall Wind, DK-6000 Kolding, Denmark;)

  • Jesper Runge Kristoffersen

    (Vattenfall Wind, DK-6000 Kolding, Denmark;)

  • Thomas Hjort

    (Vattenfall Wind, DK-6000 Kolding, Denmark;)

  • Michele Monaci

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, I-40136 Bologna, Italy;)

  • David Pisinger

    (DTU Management, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark)

Abstract

In this paper, we describe the use of operations research for offshore wind farm design in Vattenfall, one of the world’s leading companies in the generation of offshore wind energy. We focus on two key aspects that Vattenfall must address in its wind farm design process. The first is determining where to locate the turbines. This aspect is important because the placement of each turbine creates interference on the neighboring turbines, causing a power loss at the overall farm level. The optimizers must minimize this interference based on the wind conditions; however, they must also consider the other costs involved, which depend on factors such as the water depth or soil conditions at each position. The second aspect involves determining how to interconnect the turbines with cables (i.e., cable optimization). This requires Vattenfall to consider both the immediate costs and long-term costs connected with the electrical infrastructure. We developed mixed-integer programming models and matheuristic techniques to solve the two problems as they arise in practical applications. The resulting tools have given Vattenfall a competitive advantage at multiple levels. They facilitate increased revenues and reduced costs of approximately 10 million euros of net present value (NPV) per farm, while ensuring a much faster, more streamlined, and efficient design process. Considering only the sites that Vattenfall has already acquired using our optimization tools, the company experienced NPV gains of more than 150 million euros. This has contributed substantially to its competitiveness in offshore tenders and made green energy cheaper for its end customers. The tools have also been used to design the first wind farms that will be constructed subsidy-free.

Suggested Citation

  • Martina Fischetti & Jesper Runge Kristoffersen & Thomas Hjort & Michele Monaci & David Pisinger, 2020. "Vattenfall Optimizes Offshore Wind Farm Design," Interfaces, INFORMS, vol. 50(1), pages 80-94, January.
  • Handle: RePEc:inm:orinte:v:50:y:2020:i:1:p:80-94
    DOI: 10.1287/inte.2019.1019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2019.1019
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2019.1019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martina Fischetti & Michele Monaci, 2016. "Proximity search heuristics for wind farm optimal layout," Journal of Heuristics, Springer, vol. 22(4), pages 459-474, August.
    2. Martina Fischetti & David Pisinger, 2019. "Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(4), pages 469-485, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cazzaro, Davide & Koza, David Franz & Pisinger, David, 2023. "Combined layout and cable optimization of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 311(1), pages 301-315.
    2. Fischetti, Martina & Fischetti, Matteo & Stoustrup, Jakob, 2023. "Safe distancing in the time of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 139-149.
    3. Martina Fischetti & Matteo Fischetti, 2023. "Integrated Layout and Cable Routing in Wind Farm Optimal Design," Management Science, INFORMS, vol. 69(4), pages 2147-2164, April.
    4. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    5. Amorosi, Lavinia & Fischetti, Martina & Paradiso, Rosario & Roberti, Roberto, 2024. "Optimization models for the installation planning of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1182-1196.
    6. Kate Anderson & James Grymes & Alexandra Newman & Adam Warren, 2023. "North Carolina Water Utility Builds Resilience with Distributed Energy Resources," Interfaces, INFORMS, vol. 53(4), pages 247-265, July.
    7. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    2. Fischetti, Martina & Fischetti, Matteo & Stoustrup, Jakob, 2023. "Safe distancing in the time of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 139-149.
    3. Martina Fischetti & Matteo Fischetti, 2023. "Integrated Layout and Cable Routing in Wind Farm Optimal Design," Management Science, INFORMS, vol. 69(4), pages 2147-2164, April.
    4. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    5. Cranmer, Alexana & Baker, Erin & Liesiö, Juuso & Salo, Ahti, 2018. "A portfolio model for siting offshore wind farms with economic and environmental objectives," European Journal of Operational Research, Elsevier, vol. 267(1), pages 304-314.
    6. Cazzaro, Davide & Trivella, Alessio & Corman, Francesco & Pisinger, David, 2022. "Multi-scale optimization of the design of offshore wind farms," Applied Energy, Elsevier, vol. 314(C).
    7. Amorosi, Lavinia & Fischetti, Martina & Paradiso, Rosario & Roberti, Roberto, 2024. "Optimization models for the installation planning of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1182-1196.
    8. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    9. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
    10. Ding, Chengjin & Chen, Xinyuan & Wu, Weiwei & Wei, Wenbin & Xin, Zelin, 2023. "Game-theoretic analysis of the impact of crew overnight hotel cost on airlines’ fleet assignment and crew pairing," Journal of Air Transport Management, Elsevier, vol. 113(C).
    11. Martina Fischetti & David Pisinger, 2019. "Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(4), pages 469-485, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:50:y:2020:i:1:p:80-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.